
www.manaraa.com

 

 
 

 

A Spiral Non-Contiguous Processor Allocation Algorithm 

for 2D Mesh-Connected Multicomputers 

 

 التخصيص غير المتجاور الحلقي في متعذداث الحواسيب ةخوارزمي

 الشبكيت ثنائيت الأبعاد

 

By 
Ibrahim Jum’a Alrawahna 

(1320901012) 
 

 

Supervisor 

Prof. Ismail Ababneh 

 

 

Co-supervisor 

Dr. Saad Bani-Mohammad 

 

This Thesis was Submitted in Partial Fulfillment of the Requirements 

for the Master’s Degree of Science in Computer Science 
 

 
Prince Hussein Bin Abdullah College for Information Technology  

Al al-Bayt University 

 

May, 2016 



www.manaraa.com

 i 

 

Dedication 
I dedicate this work to my mother for 

her love, encouragement  and support, she 
were the light in my path. Without her, 
nothing of this would have been possible. 

 

Thank you for everything, I love you! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 ii 

 

Acknowledgments 

In the name of Allah the Most Merciful 

I offer my sincerest gratitude to my advisors, Prof. Ismail 

Ababaneh and Dr.Saad Bani-Mohammad, for their valuable 

contributions, knowledge, encouragement and helpful advices. 

As well as their vision that brought this work forward, for being 

there any time I knocked at their door. I wish them both more 

and more success and giving. 

I am highly indebted to my mother; she raised me well, 

encouraged and gave me hope and unconditional love. I wish 

her happiness and good health. Thanks are due to my brothers, 

sisters, wife and children for their supporting. 

Also very special thanks are due to my brother Prof.ali 

alrwahna, without his support and encouragement, this thesis 

couldn’t have been done. 

Finally, I would like to take a moment to thank my 

university " Al al-Bayt University", lecturers and employees, for 

the moral support and encouragement during my entire graduate 

studies. 

 

 

 

 

 

 



www.manaraa.com

 iii 

Table of Contents 

Dedication …………………………………………………………………….……….і 

Acknowledgments……………………………………………………….……...…… іі 

Table of Contents……………………………………………………….……...…… ііі 

List of Figures ……………………………………………………….……...………..іv 

List of Abbreviations………………………...………………………….……...……vіi 

Abstract ……………………………………………………….……...…………… vіii 

Chapter one: Introduction………………………………………….….….... 1 

Overview……………………………………………………….……...……….……..2 

Motivation……………………………………………………….……...………….…6 

Outline of the Thesis……………………………………………………….……….…7 

Chapter Two: Background and Preliminaries………………………. 8 

Introduction……………………………………………………….……………..……9 

Preliminaries……………………………………………………….……...…………10 

Related Allocation Strategies…………………………………………………..……10 

Switching Method……………………………………………………….……...……15 

Routing Algorithm……………………………………...……………….……...……16 

Communication Patterns…………………………………………………………..…17 

The Simulation Tool……………………………………………………….……...…18 

Justification of the Method of Study……………………………………………..…19 

Chapter Three: Spiral allocation strategy (SAS): A New Non-contiguous 

Allocation Algorithm for Mesh-Connected Multicomputers ……….……..……21 

Introduction ……………………………………………………….…………...……22 

The proposed Spiral Allocation Strategy (SAS) …………………………….………23 

Chapter four: Simulation Results………………………………………. 27 

Results and Observations……………………………………………………...……30 

Chapter five: Conclusions and Future Research ……………….… 47 

Conclusions……………………………………………………….…………………48 

Future Works……………………………………………………….…………..……48 

References……………………………………………………….………...…...……49 

 51….……….……...…….………………………………………………………الملخص

References……………………………………………………….………...…...……49 

 51….……….……...…….………………………………………………………الملخص



www.manaraa.com

 iv 

 

List of Figures 

Page number 

Figure 1.1 A) The basic structure of a shared-memory multiprocessor,  B) The basic 

structure of a distributed-memory multicomputer…………………..……............……2 

Figure 1.2 an example of a 8 x 8 2D mesh …………………………………….…….. 3 

Figure 1.3  (A) Internal fragmentation (B) External fragmentation…………..……… 5 

Figure 2.1: (a) Row-major indexing, (b) Shuffled row-major indexing, (c) Snake-like 

indexing, and (d) Shuffled snake-like indexing …………………………….………. 11 

Figure 2.2: Example 2D mesh for the Paging row-major (1) allocation strategy. Page 

blocks are labeled with the index given by the row-major indexing scheme...….….  12 

Figure 2.3:  Initial blocks of a (12 ×  11) 2D mesh system………………………...  14 

Figure 2.4: Dimension-ordered (XY)  routing in 88   mesh network……………… 17 

Figure 3.1: An example of a (4 × 4) 2D mesh……………………………….……… 23 

Figure 3.2: Spiral Allocation Strategy of a 8 x 8 2D mesh ………………...………  24 

Figure 3.3 Outline of the SAS allocation algorithm ……………………………….  25 

Figure 3.4 Outline of the SAS  deallocation algorithm  …………………………… 25 

Figure 3.5: A 8 × 8 mesh with 32 free processors   ………………………....………26 

Figure 4.1: Average response time vs. system load for the one-to-all communication 

pattern and uniform side lengths distribution in an 8 × 8 mesh.  …………...………..30 

Figure 4.2: Average response time vs. system load for the one-to-all communication 

pattern and uniform side lengths distribution in a 12 × 12 mesh………………...….. 31 

Figure 4.3: Average response time vs. system load for the one-to-all communication 

pattern and uniform side lengths distribution in a 16 × 16 mesh. …………….……...31 

Figure 4.4: Average response time vs. system load for the one-to-all communication 

pattern and uniform side lengths distribution in a 20 × 20 mesh………...…………...32 

Figure 4.5: Average response time vs. system load for the Random communication 

pattern and uniform side lengths distribution in a 8 × 8 mesh…………….….……....32 

Figure 4.6: Average response time vs. system load for the Random communication 

pattern and uniform side lengths distribution in a 12 × 12 mesh……………..……....33 



www.manaraa.com

 v 

Figure 4.7: Average response time vs. system load for the Random communication 

pattern and uniform side lengths distribution in a 16 × 16 mesh…………………......33 

Figure 4.8: Average response time vs. system load for the Random communication 

pattern and uniform side lengths distribution in a 20 × 20 mesh……………..……....34 

Figure 4.9: Average response time vs. system load for the 2D Mesh communication 

pattern and uniform side lengths distribution in a 8 × 8 mesh…………….………....35 

Figure 4.10: Average response time vs. system load for the 2D Mesh communication 

pattern and uniform side lengths distribution in a 12 × 12 mesh……………….…….35 

Figure 4.11: Average response time vs. system load for the 2D Mesh communication 

pattern and uniform side lengths distribution in a 16 × 16 mesh. ………….……….36 

Figure 4.12: Average response time vs. system load for the 2D Mesh communication 

pattern and uniform side lengths distribution in a 20 × 20 mesh……………...……36 

Figure 4.13: Average response time vs. system load for the FFT communication 

pattern and uniform side lengths distribution in a 8 × 8 mesh………………….......37 

Figure 4.14: Average response time vs. system load for the FFT communication 

pattern and uniform side lengths distribution in a 12 × 12 mesh……….….…….…...37 

Figure 4.15: Average response time vs. system load for the FFT communication 

pattern and uniform side lengths distribution in a 16 × 16 mesh………………...…...38 

Figure 4.16: Average response time vs. system load for the FFT communication 

pattern and uniform side lengths distribution in a 20 × 20 mesh………………...…...38 

Figure 4.17: Average response time vs. system load for the Divide and Conquer 

communication pattern and uniform side lengths distribution in a 8 × 8 mesh..…..…39 

Figure 4.18: Average response time vs. system load for the Divide and Conquer 

communication pattern and uniform side lengths distribution in a 12 × 12 mesh……39 

Figure 4.19: Average response time vs. system load for the Divide and Conquer 

communication pattern and uniform side lengths distribution in a 16 × 16 mesh……40 

Figure 4.20: Average response time vs. system load for the Divide and Conquer 

communication pattern and uniform side lengths distribution in a 20 × 20 mesh……40 

Figure 4.21: Average response time vs. system load for the ALL_To_One 

communication pattern and uniform side lengths distribution in a 8 × 8 mesh………41 

Figure 4.22: Average response time vs. system load for the ALL _To_One 

communication pattern and uniform side lengths distribution in a 12 × 12 mesh……41 

Figure 4.23: Average response time vs. system load for the ALL _To_One 

communication pattern and uniform side lengths distribution in a 16 × 16 mesh……42 



www.manaraa.com

 vi 

Figure 4.24: Average response time vs. system load for the ALL _To_One 

communication pattern and uniform side lengths distribution in a 20 × 20 mesh……42 

Figure 4.25: Average response time vs. system load for the Ring communication 

pattern and uniform side lengths distribution in a 8 × 8 mesh………………………..43 

Figure 4.26: Average response time vs. system load for the Ring communication 

pattern and uniform side lengths distribution in a 12 × 12 mesh………………..…...43 

Figure 4.27: Average response time vs. system load for the Ring communication 

pattern and uniform side lengths distribution in a 16 × 16 mesh…………...………...44 

Figure 4.28: Average response time vs. system load for the Ring communication 

pattern and uniform side lengths distribution in a 20 × 20 mesh………….……..…...44 

Figure 4.29: Average response time vs. system load for the NAS Multigrid Benchmark 

communication pattern and uniform side lengths distribution in a 8 × 8 mesh……..…45 

Figure 4.30: Average response time vs. system load for the NAS Multigrid Benchmark 

communication pattern and uniform side lengths distribution in a 12 × 12 mesh….…..45 

Figure 4.31: Average response time vs. system load for the NAS Multigrid Benchmark 

communication pattern and uniform side lengths distribution in a 16 × 16 mesh…...…46 

Figure 4.32: Average response time vs. system load for the NAS Multigrid Benchmark 

communication pattern and uniform side lengths distribution in a 20 × 20 mesh…..…46 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 vii 

List of Abbreviations 

(FCFS)  First Come, First Serve 

(LCFS)  Last Come first Server  

 (SSD)  Shortest Service Demand First 

 (NAS) Numerical Aerodynamic Simulation 

(SAS)  Spiral Allocation Strategy 

(FFT)  Fast Fourier Transform 

 (FF)  First-Fit 

 (BF)  Best-Fit 

 (MBS) Multiple Buddy System 

 (DQBT) Divide and Conquer Binomial Tree 

 (FS)  Frame Sliding 

(2D)   Two-Dimensional  

(2DBS) The Two Dimensional Buddy System 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 viii 

A Spiral Non-Contiguous Processor Allocation 

Algorithm for 2D Mesh-Connected Multicomputers 

 
By 

Ibrahim Jum’a Alrawahna 

 

Supervisor 

Prof. Ismail Ababneh 

 

Co-supervisor 

Dr. Saad Bani-Mohammad 
 

Abstract 

 
 

Because the processors allocated to a parallel job in non-contiguous processor 

allocation in two dimensional can be dispersed over the mesh, communication 

overhead can be high because of long distances between these processors. Increasing 

communication distances can increase the transfer time, and also increase contention 

with the messages of other jobs. In this research, we have proposed a new non-

contiguous allocation strategy, referred to as the Spiral Allocation Strategy (SAS) that 

starts allocation with the center of the mesh and scans for free processors using a 

spiral search around the center of the mesh. The aim is to reduce distances among 

processors allocated to a job. Using simulation, we compared the performance of 

SAS with that of existing non-contiguous strategies. The results show that SAS 

performs relatively better than several previous policies considered in this thesis in 

some cases, where the improvement is expressed in terms of reduced average job 

turnaround time. 
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1.1 Overview 
 

A parallel computer is a set of processors that are able to work cooperatively to solve 

a large computing problem fast, while a parallel program is the program that can be 

executed on a number of processors at the same time [5, 8, 11].  

 

Parallel computers are classified into two types: Shared-Memory computers and 

Distributed-Memory computers. In shared-memory computers (also known as 

multiprocessors) (see Figure 1.1.A), all processors share access to a common 

memory, typically via a bus. In distributed-memory computers (also known as 

multicomputers) (see Figure 1.1.B), every processor in the system has its own local 

memory and can communicate with the other processors by sending messages 

through an interconnection network [5, 6, 8, 12]. 

 

                

              

                             (A)                                                                                 (B) 

Figure 1.1   A) The basic structure of a shared-memory multiprocessor,  B) The 

basic structure of a distributed-memory multicomputer [6].     
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Interconnection networks carry data between processors and from processors to 

memory, and they can be divided into two categories: direct and indirect networks. 

Direct networks consists of point-to-point communication links among processing 

nodes. Examples of direct networks include the Star-Connected Network, Linear 

Arrays, Meshes, and k-d Meshes. Indirect networks are built using switches and 

communication links. Examples of indirect networks include the crossbar network, 

bus-based network, and multi-stage networks [9,19,20]. 

 

The mesh network is simple, scalable and easy to implement as compared to other 

networks that are used in multicomputers. These properties make the mesh network 

popular in multicomputers [1, 2, 4, 10, 11, 13, 17, 18]. The mesh network has been 

used in practical and experimental parallel machines. The Touchstone Delta system 

[1, 2, 4, 18], the Intel Paragon [3, 18], and the iWARP [1, 2, 4, 17, 18] are examples 

of two-dimensional (2D) mesh connected multicomputers, while the CrayT3D and 

the IBM BlueGene/L [3] are examples of three-dimensional (3D) mesh-connected 

multicomputers. Figure 1.2 illustrates an (8 × 8) 2D mesh network. 

 

 

 

 

Figure 1.2 an example of a 8 x 8 2D mesh 
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Processor allocation is responsible for selecting a set of processors that will execute 

an incoming parallel job, whereas job scheduling is responsible for the selection of 

the next job to execute [1, 2, 4, 7, 10, 11, 15, 17, 18, 21]. Many processor allocation 

strategies have been suggested for 2D mesh-connected multicomputers. These 

strategies are categorized into two types: contiguous and non-contiguous strategies 

[1, 7]. 

 

In contiguous allocation strategies, the set of processors allocated to a job are 

physically contiguous and have the same topology as the mesh multicomputer [1, 2, 

3, 4, 7, 15, 17, 18, 21]. The Two Dimensional Buddy System (2DBS) [15], the Frame 

Sliding (FS) [15], First Fit (FF) and Best Fit (BF) [16] are examples of contiguous 

allocation strategies that have been proposed for 2D mesh multicomputers. The 

contiguous allocation strategies suffer from the fragmentation problem, which can 

degrade the utilization of the parallel system significantly  [1, 2, 3, 10, 11, 13, 14, 15, 

18, 21]. 

 

The fragmentation problem is classified into two categories: External and Internal 

fragmentation. External fragmentation occurs when there is a sufficient number of 

processors available for the incoming job, but allocation fails because the available 

processors are not contiguous or they do not form a sub-mesh of the requested shape 

[2, 3, 4, 10, 11, 14, 17, 18, 21], as shown in figure (1.3.A) . Internal fragmentation 

occurs when the number of allocated processors is larger than that required by the 

incoming job [11, 14, 16], as shown in figure (1.3.B). The fragmentation problem 

reduces system utilization and increases job turnaround time (the time that a job 

spends in the system from arrival until leaving) [1, 2, 13]. 
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A) An internal fragmentation of 2 processors. 

                         

B) An external fragmentation of 4 processors contiguous allocation  strategy. 

Figure 1.3  (A) Internal fragmentation (B) External fragmentation [15]. 

  

To solve the fragmentation problems, non-contiguous allocation has been presented. 

In non-contiguous allocation, a job can execute on multiple disjoint smaller sub-

meshes rather than always waiting until a single contiguous sub-mesh of the 

requested size and shape is available. However, non-contiguous allocation suffers 

from increased message contention inside the network that results from different 

messages competing for network resources (e.g. channels and buffers). [1, 2, 3, 4, 7, 

14, 17, 18]. Random [2, 18], Paging [1, 18] and the Multiple Buddy Strategy (MBS) 

[1, 18] are examples of non-contiguous allocation strategies that have been proposed 

for 2D mesh multicomputers 

 

 

 

 

 

 

 



www.manaraa.com

 6 

 

1.2 Motivation  
 

Most existing non-contiguous allocation strategies suffer from message contention 

inside the network [1, 2, 4, 10, 14, 18, 21]. The main goal of any non-contiguous 

allocation strategy suggested for 2D mesh-connected multicomputers is to improve 

system performance by reducing the job response time and maximizing the system 

utilization. This is achieved by eliminating processor fragmentation and increasing 

the degree of contiguity among allocated processors so as to alleviate the 

communication overhead. 

 

Motivated by the above and according to previous research findings, there is a need 

for a new non-contiguous allocation strategy for 2D mesh-connected multicomputers 

that preserves some degree of contiguity between allocated processors in order to 

reduce the distance between the allocated processors and decrease message 

contention inside the network . 

 

This study proposes a new non-contiguous allocation strategy for 2D mesh-connected 

multicomputers, which is referred to as Spiral Allocation Strategy (SAS). In this 

strategy, there is no internal or external fragmentation, and can alleviate the 

communication overhead and improve system performance as compared to that of 

previous non-contiguous allocation (Random, Paging(0) and MBS). 

 

The proposed allocation strategy was implemented in the Procsimity simulation tool 

that is widely used in processor allocation and job scheduling in parallel systems [7]. 

The simulation results show that the proposed strategy improves system performance 

in terms of job response time as compared to the previous non-contiguous allocation 

strategies Random, Paging(0) and MBS. 
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1.3 Outline of the Thesis 
 

The rest of the thesis is organized as follows:  

Chapter 2 describes well-known non-contiguous allocation strategies that have been 

proposed for 2D mesh-connected multicomputers. It also describes the method of 

study used in this research. 

 

Chapter 3 introduces the Spiral allocation strategy (SAS) as a new noncontiguous 

allocation algorithm for 2D mesh-connected multicomputers. 

 

Chapter 4 presents the results of extensive simulation experiments carried out in order 

to evaluate the performance of the SAS strategy and compare it against existing well-

known non-contiguous allocation strategies. 

 

Chapter 5 draws the conclusions of this research and outlines possible directions to 

continue this work in the future. 
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Background and Preliminaries 
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2.1 Introduction 
 

Among numerous important interconnection topologies developed for distributed-

memory computers, two dimensional (2D) mesh topology has become popular 

because of its regularity, simplicity, easy to implement, and scalability [10,11,13]. 

Processor allocation is responsible for selecting a set of processors to allocate to 

incoming parallel job requests [1, 2, 4, 7, 10, 11, 15, 17, 18, 21]. Many processor 

allocation strategies have been suggested for 2D mesh-connected multicomputers. 

These strategies are categorized into two types: contiguous and non-contiguous 

strategies [1, 7, 10, 13, 15, 18, 21]. 

In contiguous allocation strategies, the set of processors allocated to a specific job are 

physically contiguous and have the same topology as the mesh multicomputer [1, 2, 

3, 4, 7, 15, 18, 21]. The contiguous allocation strategies suffer from the fragmentation 

problem, so the utilization of the parallel system can be degraded significantly [1, 2, 

3, 10, 11, 13, 14, 15, 21]. As previously reported in Chapter 1, the fragmentation 

problem is classified into two categories: External and Internal fragmentation. 

External fragmentation occurs when there is a sufficient number of processors 

available for the incoming job, but allocation fails because the available processors 

are not contiguous or they do not form a sub-mesh of the requested shape [2, 3, 4, 10, 

11, 14, 17, 18, 21](please see Figure 1.3.A in Chapter 1) . Internal fragmentation 

occurs when the number of allocated processors is larger than that required by the 

incoming job [11, 14, 16] (please see Figure 1.3.B in Chapter 1). 

 

The fragmentation problem reduces system utilization and increases job turnaround 

time (the time that a job spends in the system from arrival until leaving) [1, 2, 13]. 

Therefore, non-contiguous allocation has been proposed to solve the fragmentation 
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problems. In non-contiguous allocation, a job can execute on multiple disjoint smaller 

sub-meshes rather than always waiting until a single contiguous sub-mesh of the 

requested size and shape is available. Lifting the allocation contiguity condition can 

increase system utilization [1, 2, 3, 4, 10, 13, 14, 16, 17, 18, 21]. However, non-

contiguous allocation suffers from increased message contention that results from 

different job messages competing for network resources (e.g. channels and buffers). 

[1, 2, 3, 4, 7, 14, 17, 18, 21]. 

 

2.2 Preliminaries 

The target system is a 2D mesh-connected multicomputer, referred to as M(W, H) 

containing W×H processors, where W and H are the width and height of the mesh 

system. Each processor is denoted by a pair of coordinate (x, y), where 0<x <W-1 

and 0 < y <H-1. Each processor is connected by bidirectional communication links to 

its neighbor processors. 

 

2.3 Related Allocation Strategies 

In this part, a brief review of some previous non-contiguous  allocation strategies  in 

2D mesh multicomputers is presented. 

 

2.3.1 Random allocation strategy:  

 

Random [2, 3, 15, 18] is a simple strategy in which a request for a given number of 

processors is satisfied with the same number of processors that are selected randomly, 

This strategy causes no internal or external fragmentation since all jobs are assigned 

exactly the requested number of processors, if available. However, high 

communication interference amongst jobs would be expected because no type of 

contiguity is enforced in this strategy [2, 3, 15, 18, 21]. 



www.manaraa.com

 11 

 

2.3.2 Paging allocation strategy: 

 

In paging [1, 2, 14, 15, 18, 21], the whole 2D mesh is divided into square pages with 

side lengths of 
indexsize _

2 ,where size_index is a positive integer number. A Paging 

algorithm is denoted as Paging indexing_scheme (size_index), where 

indexing_scheme  is the order of scanning available pages, such as row-major, 

shuffled row-major, snake-like, and shuffled snake-like indexing), as shown in figure 

2.1. 

 

 

Figure 2.1: (a) Row-major indexing, (b) Shuffled row-major indexing, (c) Snake-like 

indexing, and (d) Shuffled snake-like indexing [15]. 

 

For example, in Paging row-major (1), the page is a (2x2) sub-mesh. A request for k 

processors is accomplished by allocating 



















indexsizeindexsize
k

_
2

_
2  free pages. Figure 

2.2 shows an example of Paging allocation that uses the row-major indexing scheme 

and a page size of one (2*2 blocks). Assume a request for nine processors arrives, the 

first three available pages will be allocated. They are the third page, fifth page and 
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sixth page. The job is allocated three pages, resulting in 25 percent internal 

fragmentation.  

 

 

 

Figure 2.2: Example 2D mesh for the Paging row-major (1) allocation strategy. Page 

blocks are labeled with the index given by the row-major indexing scheme. 

 

When page_size=0 there is no internal and external fragmentation, but when 

page_size ≥ 1 internal fragmentation may be introduced [1, 2, 14, 15, 18]. In this 

research, we considered only the row-major indexing scheme, because the other 

indexing schemes have only little impact on the performance of paging [1].  

 

 

2.3.3 Multiple Buddy Strategy (MBS) 

 

MBS eliminates fragmentation by applying the noncontiguous allocation model to the 

mesh system, while still maintaining contiguity within individual blocks [15]. 
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In MBS [1, 2, 3, 4, 15, 18], the 2D mesh network is divided into non-overlapped 

square blocks with side lengths that are power of 2. The number of requested 

processors (k) is represented as a base-4 number of the form: 

 






k

i

ii

id

4
log

0

)22( , where 30  id . 

Then the requests are allocated according to the number of di blocks of size 
ii

22  . If 

a required block is unavailable, MBS searches for bigger block, which it repeatedly 

breaks down into buddies until it produces blocks of the required size. If that fails, the 

requested block is broken into four requests for smaller blocks and then the searching 

process is repeated again [1, 2, 3, 4].  

The MBS strategy is composed of five parts:  

 

System initialization 

The mesh system is divided into blocks, which are non-overlapped square blocks 

with side lengths that are power of 2. The initialization process allows the strategy to 

be acceptable to any size mesh system [15]. Figure 2.3 shows the initial blocks of a 

(12*11) 2D mesh system. 
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Figure 2.3:  Initial blocks of a (12 * 11) 2D mesh system. 

 

 

Request factoring algorithm 

The number of requested processors (k) is represented as a base-4 number of the 

form: 

 






k

i

ii

id

4
log

0

)22( , where 30  id . Then the requests are allocated according to 

the number of di blocks of size 
ii

22  [15]. 

 

Buddy generating algorithm 

The buddy generation algorithm divides a large block into several smaller blocks to 

satisfy the 
ii

22   requests [15]. 

 

Allocation and deallocation algorithms 

First, the request is factored and stored in the appropriate element of the request 

array, Array[i]. If possible, each request for a block of size i is allocated immediately 

from free blocks. Otherwise, MBS searches for a larger block by breaking it into 
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smaller buddies. If that fails, the request will be broken down into 4 smaller requests, 

which are stored in Array[i - 1] [15]. 

The deallocation procedure of the MBS strategy needs to return all blocks owned by 

the job to the mesh system, and merge the buddies up to restore the larger blocks[15]. 

 

2.4 Switching Method 

 

In most multicomputer systems, a message enters the network and is switched or 

routed from a source node to its destination node through a series of intermediate 

nodes. Three types of switching techniques are common: store-and-forward, virtual 

cut-through and wormhole switching. 

 

Store-and-forward switching: In store-and-forward switching, the message is divided 

into fixed-length packets that are routed from source to destination. Each packet 

contains a header that contains the data needed for routing the packet. The entire 

packet is forwarded to the next node in its path after stored at every intermediate node 

[19, 20]. 

The major disadvantage of store-and-forward switching is that, since the packet is 

stored entirely at each intermediate node, the time to transmit a packet from source to 

destination is directly proportional to the number of hops in the path. Furthermore, at 

each intermediate node, we need a buffer space to hold at least one packet [19, 20]. 

 

Virtual cut-through switching: In virtual cut-through, a message is stored at an 

intermediate node only if the next channel required is occupied by another packet. 

The distance between the source and destination has little effect on communication 

latency. In an extreme case, when a message encounters is blocked at all the 
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intermediate nodes, the virtual cut-through technique reduces to store-and-

forward[19, 20]. 

 

Wormhole switching: Wormhole switching is a variant of the virtual cut-through 

technique that avoids the need for large buffer spaces. In wormhole switching, a 

packet is transmitted between nodes in small units called flits. A flit is the smallest 

unit of a message on which flow control can be performed. The header flit(s) of a 

message contains all the necessary routing information and all the other flits contain 

the data. The flits of the message are transmitted through the network in a pipelined 

fashion. Since only the header flit(s) has the routing information, all the trailing flits 

follow the header flit(s) contiguously. Flits of two different messages cannot be 

interleaved at any intermediate node. Successive flits in a packet are pipelined 

asynchronously in hardware using a handshaking protocol. When the header flit is 

blocked, then all the trailing flits occupy the buffers at the intermediate nodes [19, 

20]. Wormhole switching is used in this research when examining the performance of 

the non-contiguous allocation algorithms. We have limited ourselves to wormhole 

switching because it has been used in the existing non-contiguous allocation 

strategies [1, 2, 4, 10, 14, 15, 16, 18] 

 

 

2.5 Routing Algorithm 

 

Routing algorithms are crucial to the efficient operation of interconnection networks 

as they specify the paths packets will take when messages are being sent among the 

processors of the network. A good routing algorithm reduces the latency of the 

message by minimizing the number of hops that are required for packets to reach 
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their destination, moreover routing should be able to handle deadlock situations 

[19,20]. 

 

Dimension-ordered routing in 2D  mesh is called XY routing [15,19, 20]. The two 

dimensions of a mesh are labeled as X and Y . A message is first routed in the X 

direction completely and then in the Y direction. Figure 2.4 shows an example of XY  

routing between a source node and a destination node in 88   mesh network. 

Dimension-ordered routing is used in this research. We have limited ourselves to 

dimension-ordered routing because it has been used in the existing noncontiguous 

allocation strategies [1,4,10,15,21]. 

 

Figure 2.4: Dimension-ordered (XY)  routing in 88   mesh network 

 

 

2.6 Communication Patterns 

 

The experiments measure the effects of message-passing overhead on overall 

performance. The ProcSimity Simulator models the exchanging of messages between 

the processors allocated to an incoming job to the system. Processors allocated to an 

incoming job communicate with each other according to a given communication 
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pattern selected from common parallel applications. [15]. To evaluate the 

performance of the SAS strategy and compare it against existing well-known non-

contiguous allocation strategies, eight communication patterns have been considered. 

They are One-to-All, random, Near neighbor , Parallel Fast Fourier Transform (FFT), 

Divide and Conquer, ALL_TO_ONE, ring and NAS Multigrid Benchmark. 

 

 

2.7 The Simulation Tool (ProcSimity Simulator) 

 

ProcSimity is a software tool for research in the area of processor allocation and job 

scheduling in distributed memory multicomputers. ProcSimity was developed at the 

University of Oregon; it was written in the C programming language. ProcSimity was 

designed to investigate some of the key performance bottlenecks in the fields of job 

scheduling and processor allocation, such as the fragmentation problem and the 

message contention overhead [7]. 

 

The architecture assumed in ProcSimity consists of a network of processors 

interconnected through message routers at each node. Adjacent nodes are connected 

by two uni-directional channels and messages may be routed by either store-and-

forward, virtual cut-through or wormhole flow control. ProcSimity currently supports 

both the mesh interconnection topology and the general k-ary n-cube topology, and 

uses dimension order routing [7]. 

 

When ProcSimity simulates a mesh-connected multicomputer, independent user jobs 

that arrive at the system request sub-meshes of free processors. If an arriving job can 

not be run immediately, due to a lack of free processors or because there are other 

waiting jobs, the job is diverted to the waiting queue. The job is selected to be 
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executed from the waiting queue based on the scheduling strategy used, and then the 

processor allocation algorithm determines and allocates the set of processors on 

which the job will execute. The allocated processors may be contiguous or 

noncontiguous. The new job holds these processors exclusively until it finishes 

running. At this time, it departs the system and its processors are freed for use by 

other jobs [7]. 

 

 

 

2.8 Justification of the Method of Study 

 

There are three main approaches to evaluating the performance of any system:  

measurement, analysis, and simulation [8]. In the measurement approach, the system 

is implemented in full and its performance is measured directly. The analysis 

approach uses mathematical analysis from first principles to evaluate the system. In 

the simulation approach, a model for the real system is designed and experiments are 

conducted either for understanding the behavior of the system or for evaluating 

various strategies. 

 

In this research, simulation has been selected as the method of study. Simulation is 

used to better understand the expected performance of the real system and to test the 

effectiveness of the system design. Simulation is generally more adequate because it 

involves fewer approximations than conventional approaches; it is often used because 

it is the only viable alternative. Analysis may be too difficult, or may require too 

many simplifying assumptions that restrict their applicability to a limited number of 

scenarios. In addition, difficulties arise from trying to make realistic assumptions, and 

from size. The measurement approach is sometimes impossible because the system 
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does not exist or it would take too much time to build. In other cases, it is irrelevant 

because we cannot change the configuration as desired [8]. 

 

In this research, we used ProcSimity, which has already been validated 

extensively[7]. We have easily incorporated our suggested algorithms into the 

simulator. This has helped to considerably cut down the development time and 

debugging of the code. Extensive simulation experiments were conducted so as to 

compare the performance of the noncontiguous allocation strategies considered in this 

work. 
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Chapter 3 
Spiral allocation strategy (SAS): A New Non-

contiguous Allocation Algorithm for Mesh-Connected 

Multicomputers 
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3.1 Introduction 
Many processor allocation strategies have been proposed for 2D mesh-connected 

multicomputers. They are based on contiguous allocation, where the set of processors 

allocated to a specific job are physically contiguous and have the same topology as 

the mesh multicomputer [1, 2, 3, 4, 7, 15, 18, 21]. The contiguous allocation 

strategies suffer from the high processor fragmentation problem, so the mean 

response time and the utilization of the parallel system can be degraded significantly 

[1, 2, 3, 10, 11, 13, 14, 15, 18, 21]. 

 

To solve the fragmentation problems, non-contiguous allocation has been proposed, 

where a job can execute on multiple disjoint smaller sub-meshes rather than having to 

wait until a single contiguous sub-mesh of the requested size and shape is available. 

However, non-contiguous allocation suffers from increased message contention 

inside the network that result from different jobs messages competing for network 

resources (e.g., channels and buffers) [1, 2, 3, 4, 7, 14]. Lifting the contiguity 

condition can be expected to reduce processor fragmentation and increase processor 

utilization [1, 2, 4, 13, 14] 

 

Most existing non-contiguous allocation strategies suffer from message contention 

inside the network [1, 2, 4, 10, 14, 18, 21]. The main goal of any non-contiguous 

allocation strategy suggested for 2D mesh-connected multicomputers is to improve 

system performance by reducing the job turnaround time and maximizing the system 

utilization. This is achieved by eliminating processor fragmentation and increasing 

the degree of contiguity among allocated processors so as to alleviate the 

communication overhead. 
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Motivated by the above and according to previous research findings, there is a need 

for a new non-contiguous allocation strategy for 2D mesh-connected multicomputers 

that preserves some degree of contiguity between allocated processors in order to 

reduce the distance between the allocated processors and hence decrease message 

contention inside the network. 

 

 This study proposes a new non-contiguous allocation strategy for 2D mesh-

connected multicomputer, which is referred to as Spiral Allocation Strategy (SAS), 

and compares its performance properties using detailed simulations against the 

performance of the previous non-contiguous allocation strategies: Random, Paging(0) 

and Multiple Buddy Strategy (MBS).  

 

3.2 The proposed Spiral Allocation Strategy (SAS) 
The target system is a 2D mesh-connected multicomputer, referred to as M(W, H), as 

shown in Figure 3.1. This figure shows an example of a (4 × 4) 2D mesh, where 

allocated processors are denoted by shaded squares and free processors are denoted 

by white squares. 

 

 

Figure 3.1: An example of a (4 × 4) 2D mesh 

 

In SAS, an allocation request for k processors is satisfied by the first k available 

processors selected as follows, starting at the center of the mesh. The coordinates of 

the central node is ( x , y ), where   2/1 Wx  and   2/1 Hy , and 
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scanning for the remaining needed processors proceeds from this node using a 

squared spiral anticlockwise movement around the central node, allocating the free 

nodes encountered (see Figure 3.2). This process continues until the job is allocated 

the number of processors it has requested or the upper-left corner of the mesh is 

reached. If the number of free processors is less than that requested, allocation is not 

attempted and it fails. 

 

 

Figure 3.2: Spiral Allocation Strategy of a 8 x 8 2D mesh 

 

Allocation in SAS is implemented by the algorithm outlined in Figure 3.3, while the 

deallocation algorithm is outlined in Figure 3.4. Note that allocation always succeeds 

if the number of free processors is ≥ a × b . 

 

Procedure SAS_Allocate (a,b): 

Begin { 

//Mesh is M(W, H); incoming job J requests the allocation of an ab  sub-mesh; this 

code is for W=H 

       Job_Size =ab; Total_Allocated = 0; 

       m=(W-1)/2; n=(H-1)/2 

       Central node has coordinates (m, n);  jid is the ID of the current job 

       move=1     // number of current horizontal/vertical movements 

Step1. if (number of free processors < Job_Size)return failure.

Step2. else{ 

            if (Central node is free ) {Mesh(m,n) = jid; Total_Allocated++} 

Step3. j =0 
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           while (Total_Allocated <= Job_Size and ++j<=move ) do{ 

               if (m+ j , n) is free{      //move right 

                  Mesh(m+j, n) = jid; Total_Allocated++; 

               } 

            } 

            j = 0; 

Step4.  while (Total_Allocated <= Job_Size and ++j<=move) do{ 

              if (m , n+ j) is a free{       //move up 

                  Mesh(m,n+j)=jid; Total_Allocated++; 

               } 

             } 

             move=move+1; j = 0; 

Step5.   while (Total_Allocated <= Job_Size and ++j<=move) do{ 

               if (m- j , n) is a free{         //move left 

                   Mesh(m-j,n)=jid; Total_Allocated++; 

                } 

              } 

              j = 0; 

Step6.    while (Total_Allocated <= Job_Size and ++j<=move) do{ 

                if (m , n- j) is a free{       //move down 

                 Mesh(m,n-j)=jid; Total_Allocated++; 

               } 

             }  

             move=move+1; j =0; 

Step7. if (Total_allocated == Job_Size return success. 

           else go to Step 3. 

}  

End 

Figure 3.3 Outline of the SAS allocation algorithm 

Procedure SAS_De-allocate (): 

Begin { 
    jid is id of the departing job; 
    for all Mesh elements Mesh(i, j) do 

      if (Mesh(i,j) == jid) Mesh(i,j) = FREE; 

} 

End. 

Figure 3.4 Outline of the SAS  deallocation algorithm 

 

To explain how the allocation process works, consider the example of Figure 3.5, 

which is a 8×8 mesh is illustrated. Suppose there are 32 allocated processors in this 

example. Assume that an incoming job requests a 4 × 4 sub-mesh. Note that 

allocation always succeeds if the number of available processors is equal or larger 

than the number requested. In this example, there are 32 available processors, and we 

can allocate 16 processors. Allocation starts at the central node with coordinates 
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(3,3). The next movement is to the right of the central node, but the node is allocated 

to another job, so the algorithm will move to the next node that has the coordinates 

(4,4). We can see that it is available, so it will be allocated. The next movement is to 

the left but the node is allocated, so we go to the node with the coordinates (2,4). The 

next movement is downwards but the node is allocated, so the algorithm will move to 

the next node that has the coordinates (2,2) and we can see that it is available, so it 

will be allocated. for the sake of conciseness by using the same procedure the next 

processors that will be allocated to the job request are with coordinates ((5,2) ,(5,3) 

,(5,5), (4,5), (3,5), (1,3), (1,2), (1,1), (3,1), (4,1), (5,1) and (6,1)) respectively.  

 

Figure 3.5: A 8 × 8 mesh with 32 free processors 
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We have conducted extensive simulation experiments so as to compare the 

performance of the noncontiguous allocation strategies considered in this thesis. The 

proposed processor allocation strategy (SAS) was implemented in the C language and 

later integrated into the ProcSimity simulator [7]. The target mesh assumed is square 

with side lengths L. Jobs have exponential distribution average inter-arrival times. 

The job scheduling scheme is First Come First Serve (FCFS), where only the job at 

the head of the queue is considered for allocation. This policy was used in many other 

related studies [2, 3, 4, 10, 14, 15, 18, 21]. 

 

Processors allocated to a job communicate with each other using some common 

communication patterns. We have used eight communication patterns. They are One-

to-All, Random, Near neighbor, Parallel Fast Fourier Transform (FFT), Divide and 

Conquer, All-to-One, Ring and NAS Multigrid Benchmark. Simulation parameters 

are illustrated in Table 4.1. These values were used in many other related studies [1, 

2, 4, 10, 11, 14, 15, 16, 18, 21].  

 

 

 

 

Table 4.1: The ProcSimity Simulation Parameters used in the Simulation Experiments 
 

Parameters Description Value 

Architecture Dimensions of the architecture to be 

simulated for mesh architecture  

8*8 

12*12 

16*16 

20*20 

Packet Size Value representing the number of 1-byte 

flits in each packet that is sent through the 

mesh. 

8 

Flow Control Mechanism Method of flow control employed in the 

network switching elements. 
Wormhole routing. 

Buffer Size Number of flits that can be held in each 

network switching element buffer. 
1 
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Routing Delay Number of network cycles needed for a flit 

to be routed through a network switch to 

the output channel. 

3 

Router Type The type of routing hardware implemented 

in the network switches . 
XY Routing 

Allocation Strategy The processor allocation strategies to be 

used. 

Paging(0), MBS, Random 

and SAS 

Scheduling Strategy The job scheduling strategy to be used. First Come First 

Serve(FCFS) 

Job Size Distribution The distribution of the number of 

processors requested by each job. 

Uniform: Job widths and 

lengths are uniformly 

distributed over the range 

from 1 to the mesh side 

lengths. 

Mean Interarrival Time The mean for random generation of 

Poisson interarrival times. 

The values are determined 

through experimentation with 

the simulator. 

Mean Time Between Sends The average time between message sends 

for each process in a job executing the 

Random communication pattern. 

0.0 

Communication Pattern The specific communication pattern that 

each job executes when message passing. 

One-to-All, random, Near 

neighbor, Parallel Fast 

Fourier Transform (FFT),  

Divide and Conquer, 

All_to_One, ring and NAS 

Multigrid Benchmark. 

Message Size The number of bytes in each message. 8 

Mean Massages per Job Specifies the number of messages to be 

sent by each job. 
5.0 

Number of Runs The number of times each simulation is 

duplicated for accuracy and establishing 

confidence intervals. 

The values are determined 

through experimentation with 

the simulator with relative 

errors are below 5% of the 

means. 

Number of Jobs The number of jobs simulated in each run 1000 

 

 

 

 

Each simulation run consists of 1000 completed jobs. Simulation results are averaged 

over enough independent runs so that the confidence level is 95% that the relative 

errors don’t exceed 5%. The main performance parameter observed is the average 

response time. The response time is the time that a job spends in the system from 

arrival to departure. The independent variable in these experiments was the system 

load, defined as the inverse of the mean interarrival time of jobs. Its range of values 
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from low to heavy loads has been determined through experimentation with the 

simulator allowing each allocation strategy to reach its upper limits of utilization. In  

the figures that are presented below, the x-axis represents the system load while the y-

axis represents results of average response time. 

 

 

Average response Time: 
In Figures 4.1, 4.2, 4.3 and 4.4 the average response times of jobs are plotted against 

the system load for the one-to-all communication pattern. The results show that SAS 

performs better than all other noncontiguous allocation strategies considered across 

the mesh sizes assumed in this thesis. In Figure 4.1, for example, the average 

response times of the SAS strategy are about 11%, 26%, and 17% of those of MBS, 

Random, and Paging (0), respectively under the job arrival rate of 0.025 jobs/time 

units. 

 

 

 

Figure 4.1: Average response time vs. system load for the one-to-all communication 

pattern and uniform side lengths distribution in an 8 × 8 mesh. 
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Figure 4.2: Average response time vs. system load for the one-to-all communication 

pattern and uniform side lengths distribution in a 12 × 12 mesh. 

 

 

Figure 4.3: Average response time vs. system load for the one-to-all communication 

pattern and uniform side lengths distribution in a 16 × 16 mesh. 
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Figure 4.4: Average response time vs. system load for the one-to-all communication 

pattern and uniform side lengths distribution in a 20 × 20 mesh. 

In Figures 4.5, 4.6, 4.7 and 4.8, the average response times of jobs are plotted against 

the system load for the Random communication pattern. The results show that the 

SAS performs better than Random strategy, but it is worse than both MBS and 

Paging(0) strategies. In Figure 4.5, for example, the average response times of the 

SAS strategy are about 12% compared to MBS and 3% to Paging (0) under the job 

arrival rate of 0.05 jobs/time units. 

 

Figure 4.5: Average response time vs. system load for the Random communication 

pattern and uniform side lengths distribution in a 8 × 8 mesh. 
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Figure 4.6: Average response time vs. system load for the Random communication 

pattern and uniform side lengths distribution in a 12 × 12 mesh. 

 

 

Figure 4.7: Average response time vs. system load for the Random communication 

pattern and uniform side lengths distribution in a 16 × 16 mesh. 
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Figure 4.8: Average response time vs. system load for the Random communication 

pattern and uniform side lengths distribution in a 20 × 20 mesh. 

 

 

In Figures 4.9, 4.10, 4.11 and 4.12, the average response times of jobs are plotted 

against the system load for the near neighbor communication pattern. In figure 4.10 

,4.11 and 4.12 The results show that SAS performs better than Random strategy, but 

it is worse than both MBS and Paging(0) strategies. However in figure 4.9 The SAS 

performs better than all other noncontiguous allocation strategies considered across 

the mesh size 8 × 8. For example, the average response times of the SAS strategy are 

about 22%, 55%, and 27% of those of MBS, Random, and Paging (0), respectively 

under the job arrival rate of 0.05 jobs/time units. 
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Figure 4.9: Average response time vs. system load for the near neighbor 

communication pattern and uniform side lengths distribution in a 8 × 8 mesh. 

 

 

Figure 4.10: Average response time vs. system load for the near neighbor 

communication pattern and uniform side lengths distribution in a 12 × 12 mesh. 
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Figure 4.11: Average response time vs. system load for the near neighbor 

communication pattern and uniform side lengths distribution in a 16 × 16 mesh. 

 

 

Figure 4.12: Average response time vs. system load for the near neighbor 

communication pattern and uniform side lengths distribution in a 20 × 20 mesh 

 

 

In Figures 4.13, 4.14, 4.15 and 4.16, the average response times of jobs are plotted 

against the system load for the Parallel Fast Fourier Transform(FFT) communication 

pattern. The results show that SAS performs worse than all other noncontiguous 

allocation strategies considered across the mesh sizes 8 × 8 and 16 × 16 as shown in 

figures 4.13 and 4.15. But in figures 4.14 and 4.16 the SAS strategy performs better 
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than Paging (0), and worse than MBS and Random strategies. For instance, when the 

job arrival rate is 0.05 jobs/time units, as shown in figure 4.13  the average response 

time of SAS is increase about 73%, 16%, and 72% of that of MBS, Random, and 

Paging (0) respectively under the job arrival rate of 0.05 jobs/time units. 

 

Figure 4.13: Average response time vs. system load for the FFT communication 

pattern and uniform side lengths distribution in a 8 × 8 mesh 

 

 

Figure 4.14: Average response time vs. system load for the FFT communication 

pattern and uniform side lengths distribution in a 12 × 12 mesh 
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Figure 4.15: Average response time vs. system load for the FFT communication 

pattern and uniform side lengths distribution in a 16 × 16 mesh 

 

 

Figure 4.16: Average response time vs. system load for the FFT communication 

pattern and uniform side lengths distribution in a 20 × 20 mesh 

 

In Figures 4.17, 4.18, 4.19 and 4.20, the average response times of jobs are plotted 

against the system load for the Divide and Conquer Binomial Tree communication 

pattern. The results show that the SAS performs better than Random strategy, but it is 

worse than both MBS and Paging(0) strategies. Furthermore the results show that 

MBS strategy is substantially superior to the other strategies. For example, in figure 

4.17 the average response times of the SAS strategy is increase about 86% compared 
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to MBS and 29% to Paging (0) under the job arrival rate of 0.05 jobs/time units under 

the job arrival rate of 0.05 jobs/time units. 

 

 

Figure 4.17: Average response time vs. system load for the Divide and Conquer 

communication pattern and uniform side lengths distribution in a 8 × 8 mesh 

 

 

Figure 4.18: Average response time vs. system load for the Divide and Conquer 

communication pattern and uniform side lengths distribution in a 12 × 12 mesh 
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Figure 4.19: Average response time vs. system load for the Divide and Conquer 

communication pattern and uniform side lengths distribution in a 16 × 16 mesh 

 

 

Figure 4.20: Average response time vs. system load for the Divide and Conquer 

communication pattern and uniform side lengths distribution in a 20 × 20 mesh 

 

In Figures 4.21, 4.22, 4.23 and 4.24, the average response times of jobs are plotted 

against the system load for the All_To_One communication pattern. The results show 

that SAS performs better than all other noncontiguous allocation strategies considered 

across the mesh sizes 8 × 8 ,12×12 and 16 × 16 as shown in figures 4.21,4.22 and 

4.23. But in figures 4.24 the SAS strategy performs better than Paging (0) and MBS 

strategies and worse than the Random strategy. For instance, when the job arrival rate 
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is 0.025 jobs/time units, as shown in figure 4.22  the average response time of SAS is 

about 13%, 16%, and 12% of that of MBS, Random, and Paging (0) respectively. 

 

Figure 4.21: Average response time vs. system load for the All _to_One 

communication pattern and uniform side lengths distribution in a 8 × 8 mesh 

 

 

Figure 4.22: Average response time vs. system load for the All _to_One 

communication pattern and uniform side lengths distribution in a 12 × 12 mesh 
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Figure 4.23: Average response time vs. system load for the All _to_One 

communication pattern and uniform side lengths distribution in a 16 × 16 mesh 

 

 

Figure 4.24: Average response time vs. system load for the All _to_One 

communication pattern and uniform side lengths distribution in a 20 × 20 mesh 

 

In Figures 4.25, 4.26, 4.27 and 4.28, the average response times of jobs are plotted 

against the system load for the Ring communication pattern. The results show that the 

SAS performs better than Random strategy, but it is worse than both MBS and 

Paging(0) strategies as show in figures 4.26 ,4.27 and 4.28. Furthermore the results 

show that SAS strategy is substantially superior to the other strategies considered 

across the mesh sizes 8 × 8 as shown in figure 4.25, For example, the average 



www.manaraa.com

 43 

response time of SAS is about 26%, 66%, and 30% of that of MBS, Random, and 

Paging (0) respectively under the job arrival rate of 0.025 jobs/time units. 

 

 

Figure 4.25: Average response time vs. system load for the Ring communication 

pattern and uniform side lengths distribution in a 8 × 8 mesh 

 

 

Figure 4.26: Average response time vs. system load for the Ring communication 

pattern and uniform side lengths distribution in a 12 × 12 mesh 

 



www.manaraa.com

 44 

 

Figure 4.27: Average response time vs. system load for the Ring communication 

pattern and uniform side lengths distribution in a 16 × 16 mesh 

 

 

Figure 4.28: Average response time vs. system load for the Ring communication 

pattern and uniform side lengths distribution in a 20 × 20 mesh 

 

In Figures 4.29, 4.30, 4.31 and 4.32, the average response times of jobs are plotted 

against the system load for the NAS Multigrid Benchmark communication pattern. 

The results show that the SAS performs better than Random strategy, but it is worse 

than both MBS and Paging(0) strategies. However the performance of MBS is very 

close to that of the non-contiguous Paging(0) strategy. In figure 4.30, for example, 

the average response times of the SAS strategy increase by about 97% compared to 

MBS and 96% to Paging (0) under the job arrival rate of 0.1 jobs/time units. 



www.manaraa.com

 45 

 

 

Figure 4.29: Average response time vs. system load for the NAS Multigrid 

Benchmark communication pattern and uniform side lengths distribution in a 8 × 8 

mesh 

 

 

Figure 4.30: Average response time vs. system load for the NAS Multigrid 

Benchmark communication pattern and uniform side lengths distribution in a 12 × 12 

mesh 
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Figure 4.31: Average response time vs. system load for the NAS Multigrid 

Benchmark communication pattern and uniform side lengths distribution in a 16 × 16 

mesh 

 

 

Figure 4.32: Average response time vs. system load for the NAS Multigrid 

Benchmark communication pattern and uniform side lengths distribution in a 20 × 20 

mesh 
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5.1 Conclusions 
 

 

We have suggested a new non-contiguous allocation strategy, referred to as the spiral 

allocation strategy (SAS), which differs from the earlier non-contiguous allocation 

strategies in the method used for choosing the allocated processors. The SAS strategy 

starts the allocation process at the central node and allocates free processors that it 

counters during a squared spiral anticlockwise scan around the central node. The goal 

is to allocate nodes that are close together, which decreases the distance traversed by 

messages. 

The performance of SAS was compared against that of several existing non-

contiguous strategies. The simulation results show that SAS performs better in some 

cases. For example, when using the one-to-all and all-to-one  communication pattern, 

SAS exhibits superior performance over the previous non-contiguous allocation 

strategies. 

 

5.2 Future Works 
 

In this research, the performance of the SAS strategy has been evaluated assuming 

the First Come First Served (FCFS) scheduling strategy. As a continuation of this 

research in the future, it would be interesting to evaluate the performance with 

different scheduling approaches, such as smallest job first [7] or window-based job 

scheduling [13]. 

 

Also, as a future work of this research it can be useful to implement a hybrid 

processor allocation strategy that combines SAS and other contiguous or non-

contiguous processor allocation strategies. 
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 الملخص
 

 مجال فً متجاور والغٌر المتجاور التخصٌص استراتٌجٌات من العدٌد اقترحت
 من المتجاور التخصٌص استراتٌجٌات تعانً حٌث. الشبكٌة الحواسٌب متعددات

 تكون أن ٌجب للوظٌفة المخصصة المعالجات لأن وذلك الخارجٌة الكسٌرات مشكلة
 غٌر التخصٌص فً التجاور شرط رفع من والغرض. الشكل نفس ولها متجاورة
 فً الزائد الحمل ٌزٌد أن ممكن, ذلك ومع. الكسٌرات مشكلة تقلٌل هو المتجاور
 المخصصة المعالجات بٌن الرسائل تجتازها التً المسافات لان وذلك الاتصال
 مع تتداخل أن ٌمكن مختلفة وظائف من والرسائل, أطول تكون أن ٌمكن للوظٌفة
 التخصٌص طلب  تقسٌم كٌفٌة على الاتصال فً الزائد الحمل ٌعتمد. البعض بعضها
.  الحرة المعالجات وتعٌٌن

 واسمها جدٌد متجاور غٌر تخصٌص إستراتٌجٌة اقتراح تم البحث هذا فً
 بمسح ٌقوم ثم الشبكة منتصف من البداٌة تكون حٌث الحلقً التخصٌص إستراتٌجٌة

 برنامج وباستخدام. المنتصف حول الحلقً البحث باستخدام الحرة المعالجات على
 الغٌر السابقة الاستراتٌجٌات مع الحلقً التخصٌص إستراتٌجٌة مقارنة تم  المحاكاة
 الاستراتٌجٌات من نسبٌا أفضل الحلقً التخصٌص أن النتائج ظهرت, متجاورة
. الشبكة فً الوظٌفة تستغرقه الذي الوقت متوسط انخفاض حٌث من السابقة

  
 


