
www.manaraa.com

A Spiral Non-Contiguous Processor Allocation Algorithm

for 2D Mesh-Connected Multicomputers

 التخصيص غير المتجاور الحلقي في متعذداث الحواسيب ةخوارزمي

 الشبكيت ثنائيت الأبعاد

By
Ibrahim Jum’a Alrawahna

(1320901012)

Supervisor

Prof. Ismail Ababneh

Co-supervisor

Dr. Saad Bani-Mohammad

This Thesis was Submitted in Partial Fulfillment of the Requirements

for the Master’s Degree of Science in Computer Science

Prince Hussein Bin Abdullah College for Information Technology

Al al-Bayt University

May, 2016

www.manaraa.com

 i

Dedication
I dedicate this work to my mother for

her love, encouragement and support, she
were the light in my path. Without her,
nothing of this would have been possible.

Thank you for everything, I love you!

www.manaraa.com

 ii

Acknowledgments

In the name of Allah the Most Merciful

I offer my sincerest gratitude to my advisors, Prof. Ismail

Ababaneh and Dr.Saad Bani-Mohammad, for their valuable

contributions, knowledge, encouragement and helpful advices.

As well as their vision that brought this work forward, for being

there any time I knocked at their door. I wish them both more

and more success and giving.

I am highly indebted to my mother; she raised me well,

encouraged and gave me hope and unconditional love. I wish

her happiness and good health. Thanks are due to my brothers,

sisters, wife and children for their supporting.

Also very special thanks are due to my brother Prof.ali

alrwahna, without his support and encouragement, this thesis

couldn’t have been done.

Finally, I would like to take a moment to thank my

university " Al al-Bayt University", lecturers and employees, for

the moral support and encouragement during my entire graduate

studies.

www.manaraa.com

 iii

Table of Contents

Dedication …………………………………………………………………….……….і

Acknowledgments……………………………………………………….……...…… іі

Table of Contents……………………………………………………….……...…… ііі

List of Figures ……………………………………………………….……...………..іv

List of Abbreviations………………………...………………………….……...……vіi

Abstract ……………………………………………………….……...…………… vіii

Chapter one: Introduction………………………………………….….….... 1

Overview……………………………………………………….……...……….……..2

Motivation……………………………………………………….……...………….…6

Outline of the Thesis……………………………………………………….……….…7

Chapter Two: Background and Preliminaries………………………. 8

Introduction……………………………………………………….……………..……9

Preliminaries……………………………………………………….……...…………10

Related Allocation Strategies…………………………………………………..……10

Switching Method……………………………………………………….……...……15

Routing Algorithm……………………………………...……………….……...……16

Communication Patterns…………………………………………………………..…17

The Simulation Tool……………………………………………………….……...…18

Justification of the Method of Study……………………………………………..…19

Chapter Three: Spiral allocation strategy (SAS): A New Non-contiguous

Allocation Algorithm for Mesh-Connected Multicomputers ……….……..……21

Introduction ……………………………………………………….…………...……22

The proposed Spiral Allocation Strategy (SAS) …………………………….………23

Chapter four: Simulation Results………………………………………. 27

Results and Observations……………………………………………………...……30

Chapter five: Conclusions and Future Research ……………….… 47

Conclusions……………………………………………………….…………………48

Future Works……………………………………………………….…………..……48

References……………………………………………………….………...…...……49

 51….……….……...…….………………………………………………………الملخص

References……………………………………………………….………...…...……49

 51….……….……...…….………………………………………………………الملخص

www.manaraa.com

 iv

List of Figures

Page number

Figure 1.1 A) The basic structure of a shared-memory multiprocessor, B) The basic

structure of a distributed-memory multicomputer…………………..……............……2

Figure 1.2 an example of a 8 x 8 2D mesh …………………………………….…….. 3

Figure 1.3 (A) Internal fragmentation (B) External fragmentation…………..……… 5

Figure 2.1: (a) Row-major indexing, (b) Shuffled row-major indexing, (c) Snake-like

indexing, and (d) Shuffled snake-like indexing …………………………….………. 11

Figure 2.2: Example 2D mesh for the Paging row-major (1) allocation strategy. Page

blocks are labeled with the index given by the row-major indexing scheme...….…. 12

Figure 2.3: Initial blocks of a (12 × 11) 2D mesh system………………………... 14

Figure 2.4: Dimension-ordered (XY) routing in 88 mesh network……………… 17

Figure 3.1: An example of a (4 × 4) 2D mesh……………………………….……… 23

Figure 3.2: Spiral Allocation Strategy of a 8 x 8 2D mesh ………………...……… 24

Figure 3.3 Outline of the SAS allocation algorithm ………………………………. 25

Figure 3.4 Outline of the SAS deallocation algorithm …………………………… 25

Figure 3.5: A 8 × 8 mesh with 32 free processors ………………………....………26

Figure 4.1: Average response time vs. system load for the one-to-all communication

pattern and uniform side lengths distribution in an 8 × 8 mesh. …………...………..30

Figure 4.2: Average response time vs. system load for the one-to-all communication

pattern and uniform side lengths distribution in a 12 × 12 mesh………………...….. 31

Figure 4.3: Average response time vs. system load for the one-to-all communication

pattern and uniform side lengths distribution in a 16 × 16 mesh. …………….……...31

Figure 4.4: Average response time vs. system load for the one-to-all communication

pattern and uniform side lengths distribution in a 20 × 20 mesh………...…………...32

Figure 4.5: Average response time vs. system load for the Random communication

pattern and uniform side lengths distribution in a 8 × 8 mesh…………….….……....32

Figure 4.6: Average response time vs. system load for the Random communication

pattern and uniform side lengths distribution in a 12 × 12 mesh……………..……....33

www.manaraa.com

 v

Figure 4.7: Average response time vs. system load for the Random communication

pattern and uniform side lengths distribution in a 16 × 16 mesh…………………......33

Figure 4.8: Average response time vs. system load for the Random communication

pattern and uniform side lengths distribution in a 20 × 20 mesh……………..……....34

Figure 4.9: Average response time vs. system load for the 2D Mesh communication

pattern and uniform side lengths distribution in a 8 × 8 mesh…………….………....35

Figure 4.10: Average response time vs. system load for the 2D Mesh communication

pattern and uniform side lengths distribution in a 12 × 12 mesh……………….…….35

Figure 4.11: Average response time vs. system load for the 2D Mesh communication

pattern and uniform side lengths distribution in a 16 × 16 mesh. ………….……….36

Figure 4.12: Average response time vs. system load for the 2D Mesh communication

pattern and uniform side lengths distribution in a 20 × 20 mesh……………...……36

Figure 4.13: Average response time vs. system load for the FFT communication

pattern and uniform side lengths distribution in a 8 × 8 mesh………………….......37

Figure 4.14: Average response time vs. system load for the FFT communication

pattern and uniform side lengths distribution in a 12 × 12 mesh……….….…….…...37

Figure 4.15: Average response time vs. system load for the FFT communication

pattern and uniform side lengths distribution in a 16 × 16 mesh………………...…...38

Figure 4.16: Average response time vs. system load for the FFT communication

pattern and uniform side lengths distribution in a 20 × 20 mesh………………...…...38

Figure 4.17: Average response time vs. system load for the Divide and Conquer

communication pattern and uniform side lengths distribution in a 8 × 8 mesh..…..…39

Figure 4.18: Average response time vs. system load for the Divide and Conquer

communication pattern and uniform side lengths distribution in a 12 × 12 mesh……39

Figure 4.19: Average response time vs. system load for the Divide and Conquer

communication pattern and uniform side lengths distribution in a 16 × 16 mesh……40

Figure 4.20: Average response time vs. system load for the Divide and Conquer

communication pattern and uniform side lengths distribution in a 20 × 20 mesh……40

Figure 4.21: Average response time vs. system load for the ALL_To_One

communication pattern and uniform side lengths distribution in a 8 × 8 mesh………41

Figure 4.22: Average response time vs. system load for the ALL _To_One

communication pattern and uniform side lengths distribution in a 12 × 12 mesh……41

Figure 4.23: Average response time vs. system load for the ALL _To_One

communication pattern and uniform side lengths distribution in a 16 × 16 mesh……42

www.manaraa.com

 vi

Figure 4.24: Average response time vs. system load for the ALL _To_One

communication pattern and uniform side lengths distribution in a 20 × 20 mesh……42

Figure 4.25: Average response time vs. system load for the Ring communication

pattern and uniform side lengths distribution in a 8 × 8 mesh………………………..43

Figure 4.26: Average response time vs. system load for the Ring communication

pattern and uniform side lengths distribution in a 12 × 12 mesh………………..…...43

Figure 4.27: Average response time vs. system load for the Ring communication

pattern and uniform side lengths distribution in a 16 × 16 mesh…………...………...44

Figure 4.28: Average response time vs. system load for the Ring communication

pattern and uniform side lengths distribution in a 20 × 20 mesh………….……..…...44

Figure 4.29: Average response time vs. system load for the NAS Multigrid Benchmark

communication pattern and uniform side lengths distribution in a 8 × 8 mesh……..…45

Figure 4.30: Average response time vs. system load for the NAS Multigrid Benchmark

communication pattern and uniform side lengths distribution in a 12 × 12 mesh….…..45

Figure 4.31: Average response time vs. system load for the NAS Multigrid Benchmark

communication pattern and uniform side lengths distribution in a 16 × 16 mesh…...…46

Figure 4.32: Average response time vs. system load for the NAS Multigrid Benchmark

communication pattern and uniform side lengths distribution in a 20 × 20 mesh…..…46

www.manaraa.com

 vii

List of Abbreviations

(FCFS) First Come, First Serve

(LCFS) Last Come first Server

 (SSD) Shortest Service Demand First

 (NAS) Numerical Aerodynamic Simulation

(SAS) Spiral Allocation Strategy

(FFT) Fast Fourier Transform

 (FF) First-Fit

 (BF) Best-Fit

 (MBS) Multiple Buddy System

 (DQBT) Divide and Conquer Binomial Tree

 (FS) Frame Sliding

(2D) Two-Dimensional

(2DBS) The Two Dimensional Buddy System

www.manaraa.com

 viii

A Spiral Non-Contiguous Processor Allocation

Algorithm for 2D Mesh-Connected Multicomputers

By

Ibrahim Jum’a Alrawahna

Supervisor

Prof. Ismail Ababneh

Co-supervisor

Dr. Saad Bani-Mohammad

Abstract

Because the processors allocated to a parallel job in non-contiguous processor

allocation in two dimensional can be dispersed over the mesh, communication

overhead can be high because of long distances between these processors. Increasing

communication distances can increase the transfer time, and also increase contention

with the messages of other jobs. In this research, we have proposed a new non-

contiguous allocation strategy, referred to as the Spiral Allocation Strategy (SAS) that

starts allocation with the center of the mesh and scans for free processors using a

spiral search around the center of the mesh. The aim is to reduce distances among

processors allocated to a job. Using simulation, we compared the performance of

SAS with that of existing non-contiguous strategies. The results show that SAS

performs relatively better than several previous policies considered in this thesis in

some cases, where the improvement is expressed in terms of reduced average job

turnaround time.

www.manaraa.com

 1

Chapter 1

Introduction

www.manaraa.com

 2

1.1 Overview

A parallel computer is a set of processors that are able to work cooperatively to solve

a large computing problem fast, while a parallel program is the program that can be

executed on a number of processors at the same time [5, 8, 11].

Parallel computers are classified into two types: Shared-Memory computers and

Distributed-Memory computers. In shared-memory computers (also known as

multiprocessors) (see Figure 1.1.A), all processors share access to a common

memory, typically via a bus. In distributed-memory computers (also known as

multicomputers) (see Figure 1.1.B), every processor in the system has its own local

memory and can communicate with the other processors by sending messages

through an interconnection network [5, 6, 8, 12].

 (A) (B)

Figure 1.1 A) The basic structure of a shared-memory multiprocessor, B) The

basic structure of a distributed-memory multicomputer [6].

www.manaraa.com

 3

Interconnection networks carry data between processors and from processors to

memory, and they can be divided into two categories: direct and indirect networks.

Direct networks consists of point-to-point communication links among processing

nodes. Examples of direct networks include the Star-Connected Network, Linear

Arrays, Meshes, and k-d Meshes. Indirect networks are built using switches and

communication links. Examples of indirect networks include the crossbar network,

bus-based network, and multi-stage networks [9,19,20].

The mesh network is simple, scalable and easy to implement as compared to other

networks that are used in multicomputers. These properties make the mesh network

popular in multicomputers [1, 2, 4, 10, 11, 13, 17, 18]. The mesh network has been

used in practical and experimental parallel machines. The Touchstone Delta system

[1, 2, 4, 18], the Intel Paragon [3, 18], and the iWARP [1, 2, 4, 17, 18] are examples

of two-dimensional (2D) mesh connected multicomputers, while the CrayT3D and

the IBM BlueGene/L [3] are examples of three-dimensional (3D) mesh-connected

multicomputers. Figure 1.2 illustrates an (8 × 8) 2D mesh network.

Figure 1.2 an example of a 8 x 8 2D mesh

www.manaraa.com

 4

Processor allocation is responsible for selecting a set of processors that will execute

an incoming parallel job, whereas job scheduling is responsible for the selection of

the next job to execute [1, 2, 4, 7, 10, 11, 15, 17, 18, 21]. Many processor allocation

strategies have been suggested for 2D mesh-connected multicomputers. These

strategies are categorized into two types: contiguous and non-contiguous strategies

[1, 7].

In contiguous allocation strategies, the set of processors allocated to a job are

physically contiguous and have the same topology as the mesh multicomputer [1, 2,

3, 4, 7, 15, 17, 18, 21]. The Two Dimensional Buddy System (2DBS) [15], the Frame

Sliding (FS) [15], First Fit (FF) and Best Fit (BF) [16] are examples of contiguous

allocation strategies that have been proposed for 2D mesh multicomputers. The

contiguous allocation strategies suffer from the fragmentation problem, which can

degrade the utilization of the parallel system significantly [1, 2, 3, 10, 11, 13, 14, 15,

18, 21].

The fragmentation problem is classified into two categories: External and Internal

fragmentation. External fragmentation occurs when there is a sufficient number of

processors available for the incoming job, but allocation fails because the available

processors are not contiguous or they do not form a sub-mesh of the requested shape

[2, 3, 4, 10, 11, 14, 17, 18, 21], as shown in figure (1.3.A) . Internal fragmentation

occurs when the number of allocated processors is larger than that required by the

incoming job [11, 14, 16], as shown in figure (1.3.B). The fragmentation problem

reduces system utilization and increases job turnaround time (the time that a job

spends in the system from arrival until leaving) [1, 2, 13].

www.manaraa.com

 5

A) An internal fragmentation of 2 processors.

B) An external fragmentation of 4 processors contiguous allocation strategy.

Figure 1.3 (A) Internal fragmentation (B) External fragmentation [15].

To solve the fragmentation problems, non-contiguous allocation has been presented.

In non-contiguous allocation, a job can execute on multiple disjoint smaller sub-

meshes rather than always waiting until a single contiguous sub-mesh of the

requested size and shape is available. However, non-contiguous allocation suffers

from increased message contention inside the network that results from different

messages competing for network resources (e.g. channels and buffers). [1, 2, 3, 4, 7,

14, 17, 18]. Random [2, 18], Paging [1, 18] and the Multiple Buddy Strategy (MBS)

[1, 18] are examples of non-contiguous allocation strategies that have been proposed

for 2D mesh multicomputers

www.manaraa.com

 6

1.2 Motivation

Most existing non-contiguous allocation strategies suffer from message contention

inside the network [1, 2, 4, 10, 14, 18, 21]. The main goal of any non-contiguous

allocation strategy suggested for 2D mesh-connected multicomputers is to improve

system performance by reducing the job response time and maximizing the system

utilization. This is achieved by eliminating processor fragmentation and increasing

the degree of contiguity among allocated processors so as to alleviate the

communication overhead.

Motivated by the above and according to previous research findings, there is a need

for a new non-contiguous allocation strategy for 2D mesh-connected multicomputers

that preserves some degree of contiguity between allocated processors in order to

reduce the distance between the allocated processors and decrease message

contention inside the network .

This study proposes a new non-contiguous allocation strategy for 2D mesh-connected

multicomputers, which is referred to as Spiral Allocation Strategy (SAS). In this

strategy, there is no internal or external fragmentation, and can alleviate the

communication overhead and improve system performance as compared to that of

previous non-contiguous allocation (Random, Paging(0) and MBS).

The proposed allocation strategy was implemented in the Procsimity simulation tool

that is widely used in processor allocation and job scheduling in parallel systems [7].

The simulation results show that the proposed strategy improves system performance

in terms of job response time as compared to the previous non-contiguous allocation

strategies Random, Paging(0) and MBS.

www.manaraa.com

 7

1.3 Outline of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 describes well-known non-contiguous allocation strategies that have been

proposed for 2D mesh-connected multicomputers. It also describes the method of

study used in this research.

Chapter 3 introduces the Spiral allocation strategy (SAS) as a new noncontiguous

allocation algorithm for 2D mesh-connected multicomputers.

Chapter 4 presents the results of extensive simulation experiments carried out in order

to evaluate the performance of the SAS strategy and compare it against existing well-

known non-contiguous allocation strategies.

Chapter 5 draws the conclusions of this research and outlines possible directions to

continue this work in the future.

www.manaraa.com

 8

Chapter 2

Background and Preliminaries

www.manaraa.com

 9

2.1 Introduction

Among numerous important interconnection topologies developed for distributed-

memory computers, two dimensional (2D) mesh topology has become popular

because of its regularity, simplicity, easy to implement, and scalability [10,11,13].

Processor allocation is responsible for selecting a set of processors to allocate to

incoming parallel job requests [1, 2, 4, 7, 10, 11, 15, 17, 18, 21]. Many processor

allocation strategies have been suggested for 2D mesh-connected multicomputers.

These strategies are categorized into two types: contiguous and non-contiguous

strategies [1, 7, 10, 13, 15, 18, 21].

In contiguous allocation strategies, the set of processors allocated to a specific job are

physically contiguous and have the same topology as the mesh multicomputer [1, 2,

3, 4, 7, 15, 18, 21]. The contiguous allocation strategies suffer from the fragmentation

problem, so the utilization of the parallel system can be degraded significantly [1, 2,

3, 10, 11, 13, 14, 15, 21]. As previously reported in Chapter 1, the fragmentation

problem is classified into two categories: External and Internal fragmentation.

External fragmentation occurs when there is a sufficient number of processors

available for the incoming job, but allocation fails because the available processors

are not contiguous or they do not form a sub-mesh of the requested shape [2, 3, 4, 10,

11, 14, 17, 18, 21](please see Figure 1.3.A in Chapter 1) . Internal fragmentation

occurs when the number of allocated processors is larger than that required by the

incoming job [11, 14, 16] (please see Figure 1.3.B in Chapter 1).

The fragmentation problem reduces system utilization and increases job turnaround

time (the time that a job spends in the system from arrival until leaving) [1, 2, 13].

Therefore, non-contiguous allocation has been proposed to solve the fragmentation

www.manaraa.com

 10

problems. In non-contiguous allocation, a job can execute on multiple disjoint smaller

sub-meshes rather than always waiting until a single contiguous sub-mesh of the

requested size and shape is available. Lifting the allocation contiguity condition can

increase system utilization [1, 2, 3, 4, 10, 13, 14, 16, 17, 18, 21]. However, non-

contiguous allocation suffers from increased message contention that results from

different job messages competing for network resources (e.g. channels and buffers).

[1, 2, 3, 4, 7, 14, 17, 18, 21].

2.2 Preliminaries

The target system is a 2D mesh-connected multicomputer, referred to as M(W, H)

containing W×H processors, where W and H are the width and height of the mesh

system. Each processor is denoted by a pair of coordinate (x, y), where 0<x <W-1

and 0 < y <H-1. Each processor is connected by bidirectional communication links to

its neighbor processors.

2.3 Related Allocation Strategies

In this part, a brief review of some previous non-contiguous allocation strategies in

2D mesh multicomputers is presented.

2.3.1 Random allocation strategy:

Random [2, 3, 15, 18] is a simple strategy in which a request for a given number of

processors is satisfied with the same number of processors that are selected randomly,

This strategy causes no internal or external fragmentation since all jobs are assigned

exactly the requested number of processors, if available. However, high

communication interference amongst jobs would be expected because no type of

contiguity is enforced in this strategy [2, 3, 15, 18, 21].

www.manaraa.com

 11

2.3.2 Paging allocation strategy:

In paging [1, 2, 14, 15, 18, 21], the whole 2D mesh is divided into square pages with

side lengths of
indexsize _

2 ,where size_index is a positive integer number. A Paging

algorithm is denoted as Paging indexing_scheme (size_index), where

indexing_scheme is the order of scanning available pages, such as row-major,

shuffled row-major, snake-like, and shuffled snake-like indexing), as shown in figure

2.1.

Figure 2.1: (a) Row-major indexing, (b) Shuffled row-major indexing, (c) Snake-like

indexing, and (d) Shuffled snake-like indexing [15].

For example, in Paging row-major (1), the page is a (2x2) sub-mesh. A request for k

processors is accomplished by allocating

indexsizeindexsize
k

_
2

_
2 free pages. Figure

2.2 shows an example of Paging allocation that uses the row-major indexing scheme

and a page size of one (2*2 blocks). Assume a request for nine processors arrives, the

first three available pages will be allocated. They are the third page, fifth page and

www.manaraa.com

 12

sixth page. The job is allocated three pages, resulting in 25 percent internal

fragmentation.

Figure 2.2: Example 2D mesh for the Paging row-major (1) allocation strategy. Page

blocks are labeled with the index given by the row-major indexing scheme.

When page_size=0 there is no internal and external fragmentation, but when

page_size ≥ 1 internal fragmentation may be introduced [1, 2, 14, 15, 18]. In this

research, we considered only the row-major indexing scheme, because the other

indexing schemes have only little impact on the performance of paging [1].

2.3.3 Multiple Buddy Strategy (MBS)

MBS eliminates fragmentation by applying the noncontiguous allocation model to the

mesh system, while still maintaining contiguity within individual blocks [15].

www.manaraa.com

 13

In MBS [1, 2, 3, 4, 15, 18], the 2D mesh network is divided into non-overlapped

square blocks with side lengths that are power of 2. The number of requested

processors (k) is represented as a base-4 number of the form:

k

i

ii

id

4
log

0

)22(, where 30 id .

Then the requests are allocated according to the number of di blocks of size
ii

22 . If

a required block is unavailable, MBS searches for bigger block, which it repeatedly

breaks down into buddies until it produces blocks of the required size. If that fails, the

requested block is broken into four requests for smaller blocks and then the searching

process is repeated again [1, 2, 3, 4].

The MBS strategy is composed of five parts:

System initialization

The mesh system is divided into blocks, which are non-overlapped square blocks

with side lengths that are power of 2. The initialization process allows the strategy to

be acceptable to any size mesh system [15]. Figure 2.3 shows the initial blocks of a

(12*11) 2D mesh system.

www.manaraa.com

 14

Figure 2.3: Initial blocks of a (12 * 11) 2D mesh system.

Request factoring algorithm

The number of requested processors (k) is represented as a base-4 number of the

form:

k

i

ii

id

4
log

0

)22(, where 30 id . Then the requests are allocated according to

the number of di blocks of size
ii

22 [15].

Buddy generating algorithm

The buddy generation algorithm divides a large block into several smaller blocks to

satisfy the
ii

22 requests [15].

Allocation and deallocation algorithms

First, the request is factored and stored in the appropriate element of the request

array, Array[i]. If possible, each request for a block of size i is allocated immediately

from free blocks. Otherwise, MBS searches for a larger block by breaking it into

www.manaraa.com

 15

smaller buddies. If that fails, the request will be broken down into 4 smaller requests,

which are stored in Array[i - 1] [15].

The deallocation procedure of the MBS strategy needs to return all blocks owned by

the job to the mesh system, and merge the buddies up to restore the larger blocks[15].

2.4 Switching Method

In most multicomputer systems, a message enters the network and is switched or

routed from a source node to its destination node through a series of intermediate

nodes. Three types of switching techniques are common: store-and-forward, virtual

cut-through and wormhole switching.

Store-and-forward switching: In store-and-forward switching, the message is divided

into fixed-length packets that are routed from source to destination. Each packet

contains a header that contains the data needed for routing the packet. The entire

packet is forwarded to the next node in its path after stored at every intermediate node

[19, 20].

The major disadvantage of store-and-forward switching is that, since the packet is

stored entirely at each intermediate node, the time to transmit a packet from source to

destination is directly proportional to the number of hops in the path. Furthermore, at

each intermediate node, we need a buffer space to hold at least one packet [19, 20].

Virtual cut-through switching: In virtual cut-through, a message is stored at an

intermediate node only if the next channel required is occupied by another packet.

The distance between the source and destination has little effect on communication

latency. In an extreme case, when a message encounters is blocked at all the

www.manaraa.com

 16

intermediate nodes, the virtual cut-through technique reduces to store-and-

forward[19, 20].

Wormhole switching: Wormhole switching is a variant of the virtual cut-through

technique that avoids the need for large buffer spaces. In wormhole switching, a

packet is transmitted between nodes in small units called flits. A flit is the smallest

unit of a message on which flow control can be performed. The header flit(s) of a

message contains all the necessary routing information and all the other flits contain

the data. The flits of the message are transmitted through the network in a pipelined

fashion. Since only the header flit(s) has the routing information, all the trailing flits

follow the header flit(s) contiguously. Flits of two different messages cannot be

interleaved at any intermediate node. Successive flits in a packet are pipelined

asynchronously in hardware using a handshaking protocol. When the header flit is

blocked, then all the trailing flits occupy the buffers at the intermediate nodes [19,

20]. Wormhole switching is used in this research when examining the performance of

the non-contiguous allocation algorithms. We have limited ourselves to wormhole

switching because it has been used in the existing non-contiguous allocation

strategies [1, 2, 4, 10, 14, 15, 16, 18]

2.5 Routing Algorithm

Routing algorithms are crucial to the efficient operation of interconnection networks

as they specify the paths packets will take when messages are being sent among the

processors of the network. A good routing algorithm reduces the latency of the

message by minimizing the number of hops that are required for packets to reach

www.manaraa.com

 17

their destination, moreover routing should be able to handle deadlock situations

[19,20].

Dimension-ordered routing in 2D mesh is called XY routing [15,19, 20]. The two

dimensions of a mesh are labeled as X and Y . A message is first routed in the X

direction completely and then in the Y direction. Figure 2.4 shows an example of XY

routing between a source node and a destination node in 88 mesh network.

Dimension-ordered routing is used in this research. We have limited ourselves to

dimension-ordered routing because it has been used in the existing noncontiguous

allocation strategies [1,4,10,15,21].

Figure 2.4: Dimension-ordered (XY) routing in 88 mesh network

2.6 Communication Patterns

The experiments measure the effects of message-passing overhead on overall

performance. The ProcSimity Simulator models the exchanging of messages between

the processors allocated to an incoming job to the system. Processors allocated to an

incoming job communicate with each other according to a given communication

www.manaraa.com

 18

pattern selected from common parallel applications. [15]. To evaluate the

performance of the SAS strategy and compare it against existing well-known non-

contiguous allocation strategies, eight communication patterns have been considered.

They are One-to-All, random, Near neighbor , Parallel Fast Fourier Transform (FFT),

Divide and Conquer, ALL_TO_ONE, ring and NAS Multigrid Benchmark.

2.7 The Simulation Tool (ProcSimity Simulator)

ProcSimity is a software tool for research in the area of processor allocation and job

scheduling in distributed memory multicomputers. ProcSimity was developed at the

University of Oregon; it was written in the C programming language. ProcSimity was

designed to investigate some of the key performance bottlenecks in the fields of job

scheduling and processor allocation, such as the fragmentation problem and the

message contention overhead [7].

The architecture assumed in ProcSimity consists of a network of processors

interconnected through message routers at each node. Adjacent nodes are connected

by two uni-directional channels and messages may be routed by either store-and-

forward, virtual cut-through or wormhole flow control. ProcSimity currently supports

both the mesh interconnection topology and the general k-ary n-cube topology, and

uses dimension order routing [7].

When ProcSimity simulates a mesh-connected multicomputer, independent user jobs

that arrive at the system request sub-meshes of free processors. If an arriving job can

not be run immediately, due to a lack of free processors or because there are other

waiting jobs, the job is diverted to the waiting queue. The job is selected to be

www.manaraa.com

 19

executed from the waiting queue based on the scheduling strategy used, and then the

processor allocation algorithm determines and allocates the set of processors on

which the job will execute. The allocated processors may be contiguous or

noncontiguous. The new job holds these processors exclusively until it finishes

running. At this time, it departs the system and its processors are freed for use by

other jobs [7].

2.8 Justification of the Method of Study

There are three main approaches to evaluating the performance of any system:

measurement, analysis, and simulation [8]. In the measurement approach, the system

is implemented in full and its performance is measured directly. The analysis

approach uses mathematical analysis from first principles to evaluate the system. In

the simulation approach, a model for the real system is designed and experiments are

conducted either for understanding the behavior of the system or for evaluating

various strategies.

In this research, simulation has been selected as the method of study. Simulation is

used to better understand the expected performance of the real system and to test the

effectiveness of the system design. Simulation is generally more adequate because it

involves fewer approximations than conventional approaches; it is often used because

it is the only viable alternative. Analysis may be too difficult, or may require too

many simplifying assumptions that restrict their applicability to a limited number of

scenarios. In addition, difficulties arise from trying to make realistic assumptions, and

from size. The measurement approach is sometimes impossible because the system

www.manaraa.com

 20

does not exist or it would take too much time to build. In other cases, it is irrelevant

because we cannot change the configuration as desired [8].

In this research, we used ProcSimity, which has already been validated

extensively[7]. We have easily incorporated our suggested algorithms into the

simulator. This has helped to considerably cut down the development time and

debugging of the code. Extensive simulation experiments were conducted so as to

compare the performance of the noncontiguous allocation strategies considered in this

work.

www.manaraa.com

 21

Chapter 3
Spiral allocation strategy (SAS): A New Non-

contiguous Allocation Algorithm for Mesh-Connected

Multicomputers

www.manaraa.com

 22

3.1 Introduction
Many processor allocation strategies have been proposed for 2D mesh-connected

multicomputers. They are based on contiguous allocation, where the set of processors

allocated to a specific job are physically contiguous and have the same topology as

the mesh multicomputer [1, 2, 3, 4, 7, 15, 18, 21]. The contiguous allocation

strategies suffer from the high processor fragmentation problem, so the mean

response time and the utilization of the parallel system can be degraded significantly

[1, 2, 3, 10, 11, 13, 14, 15, 18, 21].

To solve the fragmentation problems, non-contiguous allocation has been proposed,

where a job can execute on multiple disjoint smaller sub-meshes rather than having to

wait until a single contiguous sub-mesh of the requested size and shape is available.

However, non-contiguous allocation suffers from increased message contention

inside the network that result from different jobs messages competing for network

resources (e.g., channels and buffers) [1, 2, 3, 4, 7, 14]. Lifting the contiguity

condition can be expected to reduce processor fragmentation and increase processor

utilization [1, 2, 4, 13, 14]

Most existing non-contiguous allocation strategies suffer from message contention

inside the network [1, 2, 4, 10, 14, 18, 21]. The main goal of any non-contiguous

allocation strategy suggested for 2D mesh-connected multicomputers is to improve

system performance by reducing the job turnaround time and maximizing the system

utilization. This is achieved by eliminating processor fragmentation and increasing

the degree of contiguity among allocated processors so as to alleviate the

communication overhead.

www.manaraa.com

 23

Motivated by the above and according to previous research findings, there is a need

for a new non-contiguous allocation strategy for 2D mesh-connected multicomputers

that preserves some degree of contiguity between allocated processors in order to

reduce the distance between the allocated processors and hence decrease message

contention inside the network.

 This study proposes a new non-contiguous allocation strategy for 2D mesh-

connected multicomputer, which is referred to as Spiral Allocation Strategy (SAS),

and compares its performance properties using detailed simulations against the

performance of the previous non-contiguous allocation strategies: Random, Paging(0)

and Multiple Buddy Strategy (MBS).

3.2 The proposed Spiral Allocation Strategy (SAS)
The target system is a 2D mesh-connected multicomputer, referred to as M(W, H), as

shown in Figure 3.1. This figure shows an example of a (4 × 4) 2D mesh, where

allocated processors are denoted by shaded squares and free processors are denoted

by white squares.

Figure 3.1: An example of a (4 × 4) 2D mesh

In SAS, an allocation request for k processors is satisfied by the first k available

processors selected as follows, starting at the center of the mesh. The coordinates of

the central node is (x , y), where 2/1 Wx and 2/1 Hy , and

www.manaraa.com

 24

scanning for the remaining needed processors proceeds from this node using a

squared spiral anticlockwise movement around the central node, allocating the free

nodes encountered (see Figure 3.2). This process continues until the job is allocated

the number of processors it has requested or the upper-left corner of the mesh is

reached. If the number of free processors is less than that requested, allocation is not

attempted and it fails.

Figure 3.2: Spiral Allocation Strategy of a 8 x 8 2D mesh

Allocation in SAS is implemented by the algorithm outlined in Figure 3.3, while the

deallocation algorithm is outlined in Figure 3.4. Note that allocation always succeeds

if the number of free processors is ≥ a × b .

Procedure SAS_Allocate (a,b):

Begin {

//Mesh is M(W, H); incoming job J requests the allocation of an ab sub-mesh; this

code is for W=H

 Job_Size =ab; Total_Allocated = 0;

 m=(W-1)/2; n=(H-1)/2

 Central node has coordinates (m, n); jid is the ID of the current job

 move=1 // number of current horizontal/vertical movements

Step1. if (number of free processors < Job_Size)return failure.

Step2. else{

 if (Central node is free) {Mesh(m,n) = jid; Total_Allocated++}

Step3. j =0

www.manaraa.com

 25

 while (Total_Allocated <= Job_Size and ++j<=move) do{

 if (m+ j , n) is free{ //move right

 Mesh(m+j, n) = jid; Total_Allocated++;

 }

 }

 j = 0;

Step4. while (Total_Allocated <= Job_Size and ++j<=move) do{

 if (m , n+ j) is a free{ //move up

 Mesh(m,n+j)=jid; Total_Allocated++;

 }

 }

 move=move+1; j = 0;

Step5. while (Total_Allocated <= Job_Size and ++j<=move) do{

 if (m- j , n) is a free{ //move left

 Mesh(m-j,n)=jid; Total_Allocated++;

 }

 }

 j = 0;

Step6. while (Total_Allocated <= Job_Size and ++j<=move) do{

 if (m , n- j) is a free{ //move down

 Mesh(m,n-j)=jid; Total_Allocated++;

 }

 }

 move=move+1; j =0;

Step7. if (Total_allocated == Job_Size return success.

 else go to Step 3.

}

End

Figure 3.3 Outline of the SAS allocation algorithm

Procedure SAS_De-allocate ():

Begin {
 jid is id of the departing job;
 for all Mesh elements Mesh(i, j) do

 if (Mesh(i,j) == jid) Mesh(i,j) = FREE;

}

End.

Figure 3.4 Outline of the SAS deallocation algorithm

To explain how the allocation process works, consider the example of Figure 3.5,

which is a 8×8 mesh is illustrated. Suppose there are 32 allocated processors in this

example. Assume that an incoming job requests a 4 × 4 sub-mesh. Note that

allocation always succeeds if the number of available processors is equal or larger

than the number requested. In this example, there are 32 available processors, and we

can allocate 16 processors. Allocation starts at the central node with coordinates

www.manaraa.com

 26

(3,3). The next movement is to the right of the central node, but the node is allocated

to another job, so the algorithm will move to the next node that has the coordinates

(4,4). We can see that it is available, so it will be allocated. The next movement is to

the left but the node is allocated, so we go to the node with the coordinates (2,4). The

next movement is downwards but the node is allocated, so the algorithm will move to

the next node that has the coordinates (2,2) and we can see that it is available, so it

will be allocated. for the sake of conciseness by using the same procedure the next

processors that will be allocated to the job request are with coordinates ((5,2) ,(5,3)

,(5,5), (4,5), (3,5), (1,3), (1,2), (1,1), (3,1), (4,1), (5,1) and (6,1)) respectively.

Figure 3.5: A 8 × 8 mesh with 32 free processors

www.manaraa.com

 27

Chapter 4

Simulation Results

www.manaraa.com

 28

We have conducted extensive simulation experiments so as to compare the

performance of the noncontiguous allocation strategies considered in this thesis. The

proposed processor allocation strategy (SAS) was implemented in the C language and

later integrated into the ProcSimity simulator [7]. The target mesh assumed is square

with side lengths L. Jobs have exponential distribution average inter-arrival times.

The job scheduling scheme is First Come First Serve (FCFS), where only the job at

the head of the queue is considered for allocation. This policy was used in many other

related studies [2, 3, 4, 10, 14, 15, 18, 21].

Processors allocated to a job communicate with each other using some common

communication patterns. We have used eight communication patterns. They are One-

to-All, Random, Near neighbor, Parallel Fast Fourier Transform (FFT), Divide and

Conquer, All-to-One, Ring and NAS Multigrid Benchmark. Simulation parameters

are illustrated in Table 4.1. These values were used in many other related studies [1,

2, 4, 10, 11, 14, 15, 16, 18, 21].

Table 4.1: The ProcSimity Simulation Parameters used in the Simulation Experiments

Parameters Description Value

Architecture Dimensions of the architecture to be

simulated for mesh architecture

8*8

12*12

16*16

20*20

Packet Size Value representing the number of 1-byte

flits in each packet that is sent through the

mesh.

8

Flow Control Mechanism Method of flow control employed in the

network switching elements.
Wormhole routing.

Buffer Size Number of flits that can be held in each

network switching element buffer.
1

www.manaraa.com

 29

Routing Delay Number of network cycles needed for a flit

to be routed through a network switch to

the output channel.

3

Router Type The type of routing hardware implemented

in the network switches .
XY Routing

Allocation Strategy The processor allocation strategies to be

used.

Paging(0), MBS, Random

and SAS

Scheduling Strategy The job scheduling strategy to be used. First Come First

Serve(FCFS)

Job Size Distribution The distribution of the number of

processors requested by each job.

Uniform: Job widths and

lengths are uniformly

distributed over the range

from 1 to the mesh side

lengths.

Mean Interarrival Time The mean for random generation of

Poisson interarrival times.

The values are determined

through experimentation with

the simulator.

Mean Time Between Sends The average time between message sends

for each process in a job executing the

Random communication pattern.

0.0

Communication Pattern The specific communication pattern that

each job executes when message passing.

One-to-All, random, Near

neighbor, Parallel Fast

Fourier Transform (FFT),

Divide and Conquer,

All_to_One, ring and NAS

Multigrid Benchmark.

Message Size The number of bytes in each message. 8

Mean Massages per Job Specifies the number of messages to be

sent by each job.
5.0

Number of Runs The number of times each simulation is

duplicated for accuracy and establishing

confidence intervals.

The values are determined

through experimentation with

the simulator with relative

errors are below 5% of the

means.

Number of Jobs The number of jobs simulated in each run 1000

Each simulation run consists of 1000 completed jobs. Simulation results are averaged

over enough independent runs so that the confidence level is 95% that the relative

errors don’t exceed 5%. The main performance parameter observed is the average

response time. The response time is the time that a job spends in the system from

arrival to departure. The independent variable in these experiments was the system

load, defined as the inverse of the mean interarrival time of jobs. Its range of values

www.manaraa.com

 30

from low to heavy loads has been determined through experimentation with the

simulator allowing each allocation strategy to reach its upper limits of utilization. In

the figures that are presented below, the x-axis represents the system load while the y-

axis represents results of average response time.

Average response Time:
In Figures 4.1, 4.2, 4.3 and 4.4 the average response times of jobs are plotted against

the system load for the one-to-all communication pattern. The results show that SAS

performs better than all other noncontiguous allocation strategies considered across

the mesh sizes assumed in this thesis. In Figure 4.1, for example, the average

response times of the SAS strategy are about 11%, 26%, and 17% of those of MBS,

Random, and Paging (0), respectively under the job arrival rate of 0.025 jobs/time

units.

Figure 4.1: Average response time vs. system load for the one-to-all communication

pattern and uniform side lengths distribution in an 8 × 8 mesh.

www.manaraa.com

 31

Figure 4.2: Average response time vs. system load for the one-to-all communication

pattern and uniform side lengths distribution in a 12 × 12 mesh.

Figure 4.3: Average response time vs. system load for the one-to-all communication

pattern and uniform side lengths distribution in a 16 × 16 mesh.

www.manaraa.com

 32

Figure 4.4: Average response time vs. system load for the one-to-all communication

pattern and uniform side lengths distribution in a 20 × 20 mesh.

In Figures 4.5, 4.6, 4.7 and 4.8, the average response times of jobs are plotted against

the system load for the Random communication pattern. The results show that the

SAS performs better than Random strategy, but it is worse than both MBS and

Paging(0) strategies. In Figure 4.5, for example, the average response times of the

SAS strategy are about 12% compared to MBS and 3% to Paging (0) under the job

arrival rate of 0.05 jobs/time units.

Figure 4.5: Average response time vs. system load for the Random communication

pattern and uniform side lengths distribution in a 8 × 8 mesh.

www.manaraa.com

 33

Figure 4.6: Average response time vs. system load for the Random communication

pattern and uniform side lengths distribution in a 12 × 12 mesh.

Figure 4.7: Average response time vs. system load for the Random communication

pattern and uniform side lengths distribution in a 16 × 16 mesh.

www.manaraa.com

 34

Figure 4.8: Average response time vs. system load for the Random communication

pattern and uniform side lengths distribution in a 20 × 20 mesh.

In Figures 4.9, 4.10, 4.11 and 4.12, the average response times of jobs are plotted

against the system load for the near neighbor communication pattern. In figure 4.10

,4.11 and 4.12 The results show that SAS performs better than Random strategy, but

it is worse than both MBS and Paging(0) strategies. However in figure 4.9 The SAS

performs better than all other noncontiguous allocation strategies considered across

the mesh size 8 × 8. For example, the average response times of the SAS strategy are

about 22%, 55%, and 27% of those of MBS, Random, and Paging (0), respectively

under the job arrival rate of 0.05 jobs/time units.

www.manaraa.com

 35

Figure 4.9: Average response time vs. system load for the near neighbor

communication pattern and uniform side lengths distribution in a 8 × 8 mesh.

Figure 4.10: Average response time vs. system load for the near neighbor

communication pattern and uniform side lengths distribution in a 12 × 12 mesh.

www.manaraa.com

 36

Figure 4.11: Average response time vs. system load for the near neighbor

communication pattern and uniform side lengths distribution in a 16 × 16 mesh.

Figure 4.12: Average response time vs. system load for the near neighbor

communication pattern and uniform side lengths distribution in a 20 × 20 mesh

In Figures 4.13, 4.14, 4.15 and 4.16, the average response times of jobs are plotted

against the system load for the Parallel Fast Fourier Transform(FFT) communication

pattern. The results show that SAS performs worse than all other noncontiguous

allocation strategies considered across the mesh sizes 8 × 8 and 16 × 16 as shown in

figures 4.13 and 4.15. But in figures 4.14 and 4.16 the SAS strategy performs better

www.manaraa.com

 37

than Paging (0), and worse than MBS and Random strategies. For instance, when the

job arrival rate is 0.05 jobs/time units, as shown in figure 4.13 the average response

time of SAS is increase about 73%, 16%, and 72% of that of MBS, Random, and

Paging (0) respectively under the job arrival rate of 0.05 jobs/time units.

Figure 4.13: Average response time vs. system load for the FFT communication

pattern and uniform side lengths distribution in a 8 × 8 mesh

Figure 4.14: Average response time vs. system load for the FFT communication

pattern and uniform side lengths distribution in a 12 × 12 mesh

www.manaraa.com

 38

Figure 4.15: Average response time vs. system load for the FFT communication

pattern and uniform side lengths distribution in a 16 × 16 mesh

Figure 4.16: Average response time vs. system load for the FFT communication

pattern and uniform side lengths distribution in a 20 × 20 mesh

In Figures 4.17, 4.18, 4.19 and 4.20, the average response times of jobs are plotted

against the system load for the Divide and Conquer Binomial Tree communication

pattern. The results show that the SAS performs better than Random strategy, but it is

worse than both MBS and Paging(0) strategies. Furthermore the results show that

MBS strategy is substantially superior to the other strategies. For example, in figure

4.17 the average response times of the SAS strategy is increase about 86% compared

www.manaraa.com

 39

to MBS and 29% to Paging (0) under the job arrival rate of 0.05 jobs/time units under

the job arrival rate of 0.05 jobs/time units.

Figure 4.17: Average response time vs. system load for the Divide and Conquer

communication pattern and uniform side lengths distribution in a 8 × 8 mesh

Figure 4.18: Average response time vs. system load for the Divide and Conquer

communication pattern and uniform side lengths distribution in a 12 × 12 mesh

www.manaraa.com

 40

Figure 4.19: Average response time vs. system load for the Divide and Conquer

communication pattern and uniform side lengths distribution in a 16 × 16 mesh

Figure 4.20: Average response time vs. system load for the Divide and Conquer

communication pattern and uniform side lengths distribution in a 20 × 20 mesh

In Figures 4.21, 4.22, 4.23 and 4.24, the average response times of jobs are plotted

against the system load for the All_To_One communication pattern. The results show

that SAS performs better than all other noncontiguous allocation strategies considered

across the mesh sizes 8 × 8 ,12×12 and 16 × 16 as shown in figures 4.21,4.22 and

4.23. But in figures 4.24 the SAS strategy performs better than Paging (0) and MBS

strategies and worse than the Random strategy. For instance, when the job arrival rate

www.manaraa.com

 41

is 0.025 jobs/time units, as shown in figure 4.22 the average response time of SAS is

about 13%, 16%, and 12% of that of MBS, Random, and Paging (0) respectively.

Figure 4.21: Average response time vs. system load for the All _to_One

communication pattern and uniform side lengths distribution in a 8 × 8 mesh

Figure 4.22: Average response time vs. system load for the All _to_One

communication pattern and uniform side lengths distribution in a 12 × 12 mesh

www.manaraa.com

 42

Figure 4.23: Average response time vs. system load for the All _to_One

communication pattern and uniform side lengths distribution in a 16 × 16 mesh

Figure 4.24: Average response time vs. system load for the All _to_One

communication pattern and uniform side lengths distribution in a 20 × 20 mesh

In Figures 4.25, 4.26, 4.27 and 4.28, the average response times of jobs are plotted

against the system load for the Ring communication pattern. The results show that the

SAS performs better than Random strategy, but it is worse than both MBS and

Paging(0) strategies as show in figures 4.26 ,4.27 and 4.28. Furthermore the results

show that SAS strategy is substantially superior to the other strategies considered

across the mesh sizes 8 × 8 as shown in figure 4.25, For example, the average

www.manaraa.com

 43

response time of SAS is about 26%, 66%, and 30% of that of MBS, Random, and

Paging (0) respectively under the job arrival rate of 0.025 jobs/time units.

Figure 4.25: Average response time vs. system load for the Ring communication

pattern and uniform side lengths distribution in a 8 × 8 mesh

Figure 4.26: Average response time vs. system load for the Ring communication

pattern and uniform side lengths distribution in a 12 × 12 mesh

www.manaraa.com

 44

Figure 4.27: Average response time vs. system load for the Ring communication

pattern and uniform side lengths distribution in a 16 × 16 mesh

Figure 4.28: Average response time vs. system load for the Ring communication

pattern and uniform side lengths distribution in a 20 × 20 mesh

In Figures 4.29, 4.30, 4.31 and 4.32, the average response times of jobs are plotted

against the system load for the NAS Multigrid Benchmark communication pattern.

The results show that the SAS performs better than Random strategy, but it is worse

than both MBS and Paging(0) strategies. However the performance of MBS is very

close to that of the non-contiguous Paging(0) strategy. In figure 4.30, for example,

the average response times of the SAS strategy increase by about 97% compared to

MBS and 96% to Paging (0) under the job arrival rate of 0.1 jobs/time units.

www.manaraa.com

 45

Figure 4.29: Average response time vs. system load for the NAS Multigrid

Benchmark communication pattern and uniform side lengths distribution in a 8 × 8

mesh

Figure 4.30: Average response time vs. system load for the NAS Multigrid

Benchmark communication pattern and uniform side lengths distribution in a 12 × 12

mesh

www.manaraa.com

 46

Figure 4.31: Average response time vs. system load for the NAS Multigrid

Benchmark communication pattern and uniform side lengths distribution in a 16 × 16

mesh

Figure 4.32: Average response time vs. system load for the NAS Multigrid

Benchmark communication pattern and uniform side lengths distribution in a 20 × 20

mesh

www.manaraa.com

 47

Chapter 5

Conclusions and Future

Research

www.manaraa.com

 48

5.1 Conclusions

We have suggested a new non-contiguous allocation strategy, referred to as the spiral

allocation strategy (SAS), which differs from the earlier non-contiguous allocation

strategies in the method used for choosing the allocated processors. The SAS strategy

starts the allocation process at the central node and allocates free processors that it

counters during a squared spiral anticlockwise scan around the central node. The goal

is to allocate nodes that are close together, which decreases the distance traversed by

messages.

The performance of SAS was compared against that of several existing non-

contiguous strategies. The simulation results show that SAS performs better in some

cases. For example, when using the one-to-all and all-to-one communication pattern,

SAS exhibits superior performance over the previous non-contiguous allocation

strategies.

5.2 Future Works

In this research, the performance of the SAS strategy has been evaluated assuming

the First Come First Served (FCFS) scheduling strategy. As a continuation of this

research in the future, it would be interesting to evaluate the performance with

different scheduling approaches, such as smallest job first [7] or window-based job

scheduling [13].

Also, as a future work of this research it can be useful to implement a hybrid

processor allocation strategy that combines SAS and other contiguous or non-

contiguous processor allocation strategies.

www.manaraa.com

 49

References

[1] S. Bani-Mohammad, I. Ababneh and M. Hamdan,”Comparative Performance

Evaluation of Non-Contiguous Allocation Algorithms in 2D Mesh-Connected

Multicomputers”, IEEE International Conference on Scalable Computing and

Communications (ScalCom 2010) ,Bradford, UK, pp. 2933- 2939, 2010.

[2] S. Bani-Mohammad, M. Ould-Khaoua, and I. Ababneh, “An Efficient Non-

Contiguous Processor Allocation Strategy for 2D Mesh Connected

Multicomputers”, Journal of Information Sciences, vol. 177, no. 14, pp. 2867-

2883, 2007.

[3] R. almomani, I. Ababneh,” Communication overhead in non-contiguous processor

allocation policies for 3D mesh-connected multicomputers”, The International

Arab Journal of Information Technology, vol. 9, no. 2, pp. 133-141, 2012.

[4] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and Lewis M. Mackhenzie,

“An Efficient Processor Allocation Strategy that Maintains a High Degree of

Contiguity among Processors in 2D Mesh Connected Multicomputers”,IEEE

Computer Society Press, pp. 934- 941, 13-16 May 2007.

[5] I. Foster, “Designing and Building Parallel Programs, Concepts and Tools for

Parallel Software Engineering”, Addison-Wesley, 1995.

[6] Hennessy-Patterson – “Computer Architecture.

A.Quantitative.Approach”.4th.ed.2007

[7] ProcSimity V4.3 User’s Manual, University of Oregon, 1997.

[8] J.E. Savage, “Models of Computation: Exploring the Power of Computing”,

Addison-Wesley, Reading, MA (1998)

[9] V. Kumar, A. Grama, A. Gupta, and G. Karypis, “Introduction to Parallel

Computing, Person education Limited”,2nd edition, (2003)ISBN 0-201-64865-2.

[10] S. Bani-Ahmad, “Processor Allocation with Reduced Internal and External

Fragmentation in 2D Mesh-based Multicomputer”. Journal on Applied

Sciences, vol. 11, no. 6, pp. 943–952 (2011) ISSN 1812-5654.

[11] S. M. Yoo, H. Choo, H. Y. Youn, C. Yu, and Y. Lee. “On Task Relocation in

Two-dimensional Meshes”. In Journal of Parallel and Distributed Computing,

vol. 60, no. 5, pp. 616 – 638, 2000.

[12] M. Morris Mano, “Computer System Architecture, Person Education Limited”,

3rd edition,(1992) ISBN 0-13-175563-3.

[13] I. Ababneh, S. Bani-Mohammad, “A New Window-Based Job Scheduling

Scheme for 2D Mesh Multicomputers”, Simulation Modelling Practice

Theory, vol.19, no.1, pp.482–493, 2011

https://www.idc-online.com/technical_references/pdfs/information_technology/Communication%20Overhead.pdf
https://www.idc-online.com/technical_references/pdfs/information_technology/Communication%20Overhead.pdf
https://www.idc-online.com/technical_references/pdfs/information_technology/Communication%20Overhead.pdf
https://www.idc-online.com/technical_references/pdfs/information_technology/Communication%20Overhead.pdf

www.manaraa.com

 50

[14] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and Lewis M. Mackhenzie,

“Non-contiguous Processor Allocation Strategy for 2D Mesh Connected

Multicomputers based on Sub-meshes Available for Allocation”, Proceedings of

the 12th International Conference on Parallel and Distributed Systems

(ICPADS’06), IEEE Computer Society Press, USA, vol. 2, pp.41-48,2006.

 [15] V. Lo, K. Windisch, W. Liu, and B. Nitzberg, “Non-contiguous processor

allocation algorithms for mesh-connected multicomputers”, IEEE Transactions

on Parallel and Distributed Systems, vol. 8, no. 7, pp. 712-726, 1997.

[16] Y. H. Zhu, “Efficient processor allocation strategies for mesh-connected parallel

computers”, Journal of Parallel and Distributed Computing, vol. 16, no. 4, pp.

328-337, 1992.

[17] I. Ababneh, An Efficient Free-list Submesh Allocation Scheme for two-

dimensional mesh-connected multicomputers, Journal of Systems and

Software, vol. 79, no. 8, pp.1168-1179, 2006.

[18]

I. Ababneh, Availability-based noncontiguous processor allocation policies for

2D mesh-connected multicomputers, Journal of Systems and Software, vol. 81,

no. 7, pp. 1081–1092, 2008.

[19] P. Mohapatra, Wormhole routing techniques in multicomputer systems, ACM

Computing Surveys, vol. 30, no. 3, pp. 375-411, 1998.

[20] L. M. Ni and P. K. McKinley, A survey of wormhole routing techniques in

direct networks. IEEE Computer, vol. 26, no. 2, pp. 62-76, 1993.

[21]

Sulieman Bani-Ahmad"Submesh Allocation in 2D-Mesh Multicomputers:

Partitioning at the Longest Dimension of Requests" The International Arab

Journal of Information Technology, Vol. 10, No. 3, pp. 245-252, 2013

www.manaraa.com

 51

 الملخص

 مجال فً متجاور والغٌر المتجاور التخصٌص استراتٌجٌات من العدٌد اقترحت
 من المتجاور التخصٌص استراتٌجٌات تعانً حٌث. الشبكٌة الحواسٌب متعددات

 تكون أن ٌجب للوظٌفة المخصصة المعالجات لأن وذلك الخارجٌة الكسٌرات مشكلة
 غٌر التخصٌص فً التجاور شرط رفع من والغرض. الشكل نفس ولها متجاورة
 فً الزائد الحمل ٌزٌد أن ممكن, ذلك ومع. الكسٌرات مشكلة تقلٌل هو المتجاور
 المخصصة المعالجات بٌن الرسائل تجتازها التً المسافات لان وذلك الاتصال
 مع تتداخل أن ٌمكن مختلفة وظائف من والرسائل, أطول تكون أن ٌمكن للوظٌفة
 التخصٌص طلب تقسٌم كٌفٌة على الاتصال فً الزائد الحمل ٌعتمد. البعض بعضها
. الحرة المعالجات وتعٌٌن

 واسمها جدٌد متجاور غٌر تخصٌص إستراتٌجٌة اقتراح تم البحث هذا فً
 بمسح ٌقوم ثم الشبكة منتصف من البداٌة تكون حٌث الحلقً التخصٌص إستراتٌجٌة

 برنامج وباستخدام. المنتصف حول الحلقً البحث باستخدام الحرة المعالجات على
 الغٌر السابقة الاستراتٌجٌات مع الحلقً التخصٌص إستراتٌجٌة مقارنة تم المحاكاة
 الاستراتٌجٌات من نسبٌا أفضل الحلقً التخصٌص أن النتائج ظهرت, متجاورة
. الشبكة فً الوظٌفة تستغرقه الذي الوقت متوسط انخفاض حٌث من السابقة

